
    ]Mh,                     2   d Z ddlmZ ddlmZ ddlZddlZd ZefdZ	e
efdZd Zd	 Zd
 Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd ZddZ G d de          ZddZd Zedk    r,ddlZddlZ ej          ej!                    j"                   dS dS )zTRoutines for calculating bounding boxes, point in rectangle calculations and
so on.
    )otRound)VectorNc                     | sdS d | D             }d | D             }t          |          t          |          t          |          t          |          fS )zCalculate the bounding rectangle of a 2D points array.

    Args:
        array: A sequence of 2D tuples.

    Returns:
        A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``.
    r   r   r   r   c                     g | ]\  }}|S  r   .0xys      Y/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/fontTools/misc/arrayTools.py
<listcomp>zcalcBounds.<locals>.<listcomp>       			1!			    c                     g | ]\  }}|S r   r   r	   s      r   r   zcalcBounds.<locals>.<listcomp>   r   r   minmax)arrayxsyss      r   
calcBoundsr      s^      z					B					Br77CGGSWWc"gg--r   c                 T    t          fdt          |           D                       S )a  Calculate the integer bounding rectangle of a 2D points array.

    Values are rounded to closest integer towards ``+Infinity`` using the
    :func:`fontTools.misc.fixedTools.otRound` function by default, unless
    an optional ``round`` function is passed.

    Args:
        array: A sequence of 2D tuples.
        round: A rounding function of type ``f(x: float) -> int``.

    Returns:
        A four-item tuple of integers representing the bounding rectangle:
        ``(xMin, yMin, xMax, yMax)``.
    c              3   .   K   | ]} |          V  d S )Nr   )r
   vrounds     r   	<genexpr>z calcIntBounds.<locals>.<genexpr>*   s+      55aq555555r   )tupler   )r   r   s    `r   calcIntBoundsr      s0     5555:e#4#4555555r   c                     |\  }}| ||||fS | \  }}}}	 |||           |||           |||           ||	|          fS )a_  Add a point to a bounding rectangle.

    Args:
        bounds: A bounding rectangle expressed as a tuple
            ``(xMin, yMin, xMax, yMax), or None``.
        p: A 2D tuple representing a point.
        min,max: functions to compute the minimum and maximum.

    Returns:
        The updated bounding rectangle ``(xMin, yMin, xMax, yMax)``.
    r   )
boundspr   r   r   r   xMinyMinxMaxyMaxs
             r   updateBoundsr'   -   se     FQ~!Qz#D$d3tQ<<T1ss4||SSq\\AAr   c                 Z    | \  }}|\  }}}}||cxk    o|k    nc o||cxk    o|k    nc S )a'  Test if a point is inside a bounding rectangle.

    Args:
        p: A 2D tuple representing a point.
        rect: A bounding rectangle expressed as a tuple
            ``(xMin, yMin, xMax, yMax)``.

    Returns:
        ``True`` if the point is inside the rectangle, ``False`` otherwise.
    r   )r"   rectr   r   r#   r$   r%   r&   s           r   pointInRectr*   @   s^     FQ!D$dA6DA$5$5$5$5$5$5$5$56r   c                 d    t          |           dk     rg S |\  fd| D             S )a  Determine which points are inside a bounding rectangle.

    Args:
        array: A sequence of 2D tuples.
        rect: A bounding rectangle expressed as a tuple
            ``(xMin, yMin, xMax, yMax)``.

    Returns:
        A list containing the points inside the rectangle.
       c                 V    g | ]%\  }}|cxk    ok    nc o|cxk    ok    nc &S r   r   )r
   r   r   r%   r#   r&   r$   s      r   r   z pointsInRect.<locals>.<listcomp>^   sZ    JJJDAqTQ$7TQ%6%6%6%6$%6%6%6%6JJJr   )len)r   r)   r%   r#   r&   r$   s     @@@@r   pointsInRectr/   P   sM     5zzA~~	!D$dJJJJJJJEJJJJr   c                 F    | \  }}t          j        |dz  |dz  z             S )zCalculate the length of the given vector.

    Args:
        vector: A 2D tuple.

    Returns:
        The Euclidean length of the vector.
       )mathsqrt)vectorr   r   s      r   vectorLengthr5   a   s)     DAq9QTAqD[!!!r   c                     d | D             S )zRound a list of floats to 16-bit signed integers.

    Args:
        array: List of float values.

    Returns:
        A list of rounded integers.
    c                 V    g | ]&}t          t          j        |d z                       'S )g      ?)intr2   floor)r
   is     r   r   zasInt16.<locals>.<listcomp>w   s.    444C
1s7##$$444r   r   )r   s    r   asInt16r;   n   s     54e4444r   c                     | \  }}}}t          ||          t          ||          t          ||          t          ||          fS )aP  Normalize a bounding box rectangle.

    This function "turns the rectangle the right way up", so that the following
    holds::

        xMin <= xMax and yMin <= yMax

    Args:
        rect: A bounding rectangle expressed as a tuple
            ``(xMin, yMin, xMax, yMax)``.

    Returns:
        A normalized bounding rectangle.
    r   r)   r#   r$   r%   r&   s        r   normRectr>   z   sA      $T4ttT??CdOOSt__c$ooMMr   c                 4    | \  }}}}||z  ||z  ||z  ||z  fS )a:  Scale a bounding box rectangle.

    Args:
        rect: A bounding rectangle expressed as a tuple
            ``(xMin, yMin, xMax, yMax)``.
        x: Factor to scale the rectangle along the X axis.
        Y: Factor to scale the rectangle along the Y axis.

    Returns:
        A scaled bounding rectangle.
    r   )r)   r   r   r#   r$   r%   r&   s          r   	scaleRectr@      s1      $T4t!8TAXtax11r   c                 4    | \  }}}}||z   ||z   ||z   ||z   fS )a@  Offset a bounding box rectangle.

    Args:
        rect: A bounding rectangle expressed as a tuple
            ``(xMin, yMin, xMax, yMax)``.
        dx: Amount to offset the rectangle along the X axis.
        dY: Amount to offset the rectangle along the Y axis.

    Returns:
        An offset bounding rectangle.
    r   r)   dxdyr#   r$   r%   r&   s          r   
offsetRectrE      1      $T4t"9dRiD2I55r   c                 4    | \  }}}}||z   ||z   ||z
  ||z
  fS )aI  Inset a bounding box rectangle on all sides.

    Args:
        rect: A bounding rectangle expressed as a tuple
            ``(xMin, yMin, xMax, yMax)``.
        dx: Amount to inset the rectangle along the X axis.
        dY: Amount to inset the rectangle along the Y axis.

    Returns:
        An inset bounding rectangle.
    r   rB   s          r   	insetRectrH      rF   r   c                     | \  }}}}|\  }}}}	t          ||          t          ||          t          ||          t          ||	          f\  }
}}}|
|k    s||k    rdS d|
|||ffS )a  Test for rectangle-rectangle intersection.

    Args:
        rect1: First bounding rectangle, expressed as tuples
            ``(xMin, yMin, xMax, yMax)``.
        rect2: Second bounding rectangle.

    Returns:
        A boolean and a rectangle.
        If the input rectangles intersect, returns ``True`` and the intersecting
        rectangle. Returns ``False`` and ``(0, 0, 0, 0)`` if the input
        rectangles don't intersect.
    )Fr   T)r   r   rect1rect2xMin1yMin1xMax1yMax1xMin2yMin2xMax2yMax2r#   r$   r%   r&   s                 r   sectRectrU      s     $) UE5%#( UE5%E5E5E5E5	D$d t||tt||""$dD)))r   c                     | \  }}}}|\  }}}}	t          ||          t          ||          t          ||          t          ||	          f\  }
}}}|
|||fS )a0  Determine union of bounding rectangles.

    Args:
        rect1: First bounding rectangle, expressed as tuples
            ``(xMin, yMin, xMax, yMax)``.
        rect2: Second bounding rectangle.

    Returns:
        The smallest rectangle in which both input rectangles are fully
        enclosed.
    r   rJ   s                 r   	unionRectrW      su     $) UE5%#( UE5%E5E5E5E5	D$d $d##r   c                 0    | \  }}}}||z   dz  ||z   dz  fS )zDetermine rectangle center.

    Args:
        rect: Bounding rectangle, expressed as tuples
            ``(xMin, yMin, xMax, yMax)``.

    Returns:
        A 2D tuple representing the point at the center of the rectangle.
    r1   r   r=   s        r   
rectCenterrY      s/      $T4t4K1td{a///r   c                 &    | \  }}}}||z
  ||z
  z  S )zDetermine rectangle area.

    Args:
        rect: Bounding rectangle, expressed as tuples
            ``(xMin, yMin, xMax, yMax)``.

    Returns:
        The area of the rectangle.
    r   r=   s        r   rectArear[      s%      $T4t4KD4K((r   c                 $   | \  }}}}t          t          j        |                    }t          t          j        |                    }t          t          j        |                    }t          t          j        |                    }||||fS )a  Round a rectangle to integer values.

    Guarantees that the resulting rectangle is NOT smaller than the original.

    Args:
        rect: Bounding rectangle, expressed as tuples
            ``(xMin, yMin, xMax, yMax)``.

    Returns:
        A rounded bounding rectangle.
    )r8   r2   r9   ceilr=   s        r   intRectr^     sy      $T4ttz$  Dtz$  DtyDtyD$d##r   r,   c           	         |dk     rt          d|          t          |           \  }}}}t          t          j        ||z            |z            t          t          j        ||z            |z            t          t          j        ||z            |z            t          t          j        ||z            |z            fS )z
    >>> bounds = (72.3, -218.4, 1201.3, 919.1)
    >>> quantizeRect(bounds)
    (72, -219, 1202, 920)
    >>> quantizeRect(bounds, factor=10)
    (70, -220, 1210, 920)
    >>> quantizeRect(bounds, factor=100)
    (0, -300, 1300, 1000)
    r,   z*Expected quantization factor >= 1, found: )
ValueErrorr>   r8   r2   r9   r]   )r)   factorr#   r$   r%   r&   s         r   quantizeRectrb     s     zzPfPPQQQ%d^^D$dDJtf}%%.//DJtf}%%.//DIdVm$$v-..DIdVm$$v-..	 r   c                       e Zd Zd ZdS )r   c                 :    t          j        dt                     d S )NzffontTools.misc.arrayTools.Vector has been deprecated, please use fontTools.misc.vector.Vector instead.)warningswarnDeprecationWarning)selfargskwargss      r   __init__zVector.__init__5  s(    4	
 	
 	
 	
 	
r   N)__name__
__module____qualname__rk   r   r   r   r   r   4  s#        
 
 
 
 
r   r   Fc              #      K   | sdS |rt          |           }nt          |           }t          |d          }|}|D ]
}||fV  |}||fV  dS )a  Iterate over current and next items in iterable.

    Args:
        iterable: An iterable
        reverse: If true, iterate in reverse order.

    Returns:
        A iterable yielding two elements per iteration.

    Example:

        >>> tuple(pairwise([]))
        ()
        >>> tuple(pairwise([], reverse=True))
        ()
        >>> tuple(pairwise([0]))
        ((0, 0),)
        >>> tuple(pairwise([0], reverse=True))
        ((0, 0),)
        >>> tuple(pairwise([0, 1]))
        ((0, 1), (1, 0))
        >>> tuple(pairwise([0, 1], reverse=True))
        ((1, 0), (0, 1))
        >>> tuple(pairwise([0, 1, 2]))
        ((0, 1), (1, 2), (2, 0))
        >>> tuple(pairwise([0, 1, 2], reverse=True))
        ((2, 1), (1, 0), (0, 2))
        >>> tuple(pairwise(['a', 'b', 'c', 'd']))
        (('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'a'))
        >>> tuple(pairwise(['a', 'b', 'c', 'd'], reverse=True))
        (('d', 'c'), ('c', 'b'), ('b', 'a'), ('a', 'd'))
    N)reversediternext)iterablereverseitfirstabs         r   pairwisery   =  s      B   h(^^TNNEA  !fe*r   c                      dS )a  
    >>> import math
    >>> calcBounds([])
    (0, 0, 0, 0)
    >>> calcBounds([(0, 40), (0, 100), (50, 50), (80, 10)])
    (0, 10, 80, 100)
    >>> updateBounds((0, 0, 0, 0), (100, 100))
    (0, 0, 100, 100)
    >>> pointInRect((50, 50), (0, 0, 100, 100))
    True
    >>> pointInRect((0, 0), (0, 0, 100, 100))
    True
    >>> pointInRect((100, 100), (0, 0, 100, 100))
    True
    >>> not pointInRect((101, 100), (0, 0, 100, 100))
    True
    >>> list(pointsInRect([(50, 50), (0, 0), (100, 100), (101, 100)], (0, 0, 100, 100)))
    [True, True, True, False]
    >>> vectorLength((3, 4))
    5.0
    >>> vectorLength((1, 1)) == math.sqrt(2)
    True
    >>> list(asInt16([0, 0.1, 0.5, 0.9]))
    [0, 0, 1, 1]
    >>> normRect((0, 10, 100, 200))
    (0, 10, 100, 200)
    >>> normRect((100, 200, 0, 10))
    (0, 10, 100, 200)
    >>> scaleRect((10, 20, 50, 150), 1.5, 2)
    (15.0, 40, 75.0, 300)
    >>> offsetRect((10, 20, 30, 40), 5, 6)
    (15, 26, 35, 46)
    >>> insetRect((10, 20, 50, 60), 5, 10)
    (15, 30, 45, 50)
    >>> insetRect((10, 20, 50, 60), -5, -10)
    (5, 10, 55, 70)
    >>> intersects, rect = sectRect((0, 10, 20, 30), (0, 40, 20, 50))
    >>> not intersects
    True
    >>> intersects, rect = sectRect((0, 10, 20, 30), (5, 20, 35, 50))
    >>> intersects
    1
    >>> rect
    (5, 20, 20, 30)
    >>> unionRect((0, 10, 20, 30), (0, 40, 20, 50))
    (0, 10, 20, 50)
    >>> rectCenter((0, 0, 100, 200))
    (50.0, 100.0)
    >>> rectCenter((0, 0, 100, 199.0))
    (50.0, 99.5)
    >>> intRect((0.9, 2.9, 3.1, 4.1))
    (0, 2, 4, 5)
    Nr   r   r   r   _testr{   l  s      r   __main__)r,   )F)#__doc__fontTools.misc.roundToolsr   fontTools.misc.vectorr   _Vectorr2   re   r   r   r   r   r'   r*   r/   r5   r;   r>   r@   rE   rH   rU   rW   rY   r[   r^   rb   ry   r{   rl   sysdoctestexittestmodfailedr   r   r   <module>r      s    . - - - - - 3 3 3 3 3 3  . . .   ' 6 6 6 6$ !$ B B B B&7 7 7 K K K"
" 
" 
"	5 	5 	5N N N&2 2 2 6 6 6 6 6 6 * * *6$ $ $.0 0 0) ) )$ $ $(   *
 
 
 
 
W 
 
 
, , , ,^5 5 5p zJJJNNNCH_W_%&&&&&	 r   