from __future__ import annotations

from functools import partial
from typing import (
    TYPE_CHECKING,
    Any,
    Container,
    Iterable,
    Mapping,
    Protocol,
    Sequence,
    overload,
)

from narwhals._compliant.typing import (
    CompliantExprT,
    CompliantFrameT,
    CompliantLazyFrameT,
    DepthTrackingExprT,
    EagerDataFrameT,
    EagerExprT,
    EagerSeriesT,
    LazyExprT,
    NativeFrameT,
    NativeFrameT_co,
)
from narwhals._utils import (
    exclude_column_names,
    get_column_names,
    passthrough_column_names,
)
from narwhals.dependencies import is_numpy_array_2d

if TYPE_CHECKING:
    from typing_extensions import TypeAlias

    from narwhals._compliant.selectors import CompliantSelectorNamespace
    from narwhals._compliant.when_then import CompliantWhen, EagerWhen
    from narwhals._utils import Implementation, Version
    from narwhals.dtypes import DType
    from narwhals.schema import Schema
    from narwhals.typing import (
        ConcatMethod,
        Into1DArray,
        IntoDType,
        NonNestedLiteral,
        _2DArray,
    )

    Incomplete: TypeAlias = Any

__all__ = ["CompliantNamespace", "EagerNamespace"]


class CompliantNamespace(Protocol[CompliantFrameT, CompliantExprT]):
    _implementation: Implementation
    _backend_version: tuple[int, ...]
    _version: Version

    def all(self) -> CompliantExprT:
        return self._expr.from_column_names(get_column_names, context=self)

    def col(self, *column_names: str) -> CompliantExprT:
        return self._expr.from_column_names(
            passthrough_column_names(column_names), context=self
        )

    def exclude(self, excluded_names: Container[str]) -> CompliantExprT:
        return self._expr.from_column_names(
            partial(exclude_column_names, names=excluded_names), context=self
        )

    def nth(self, *column_indices: int) -> CompliantExprT:
        return self._expr.from_column_indices(*column_indices, context=self)

    def len(self) -> CompliantExprT: ...
    def lit(self, value: NonNestedLiteral, dtype: IntoDType | None) -> CompliantExprT: ...
    def all_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
    def any_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
    def sum_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
    def mean_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
    def min_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
    def max_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
    def concat(
        self, items: Iterable[CompliantFrameT], *, how: ConcatMethod
    ) -> CompliantFrameT: ...
    def when(
        self, predicate: CompliantExprT
    ) -> CompliantWhen[CompliantFrameT, Incomplete, CompliantExprT]: ...
    def concat_str(
        self, *exprs: CompliantExprT, separator: str, ignore_nulls: bool
    ) -> CompliantExprT: ...
    @property
    def selectors(self) -> CompliantSelectorNamespace[Any, Any]: ...
    @property
    def _expr(self) -> type[CompliantExprT]: ...


class DepthTrackingNamespace(
    CompliantNamespace[CompliantFrameT, DepthTrackingExprT],
    Protocol[CompliantFrameT, DepthTrackingExprT],
):
    def all(self) -> DepthTrackingExprT:
        return self._expr.from_column_names(
            get_column_names, function_name="all", context=self
        )

    def col(self, *column_names: str) -> DepthTrackingExprT:
        return self._expr.from_column_names(
            passthrough_column_names(column_names), function_name="col", context=self
        )

    def exclude(self, excluded_names: Container[str]) -> DepthTrackingExprT:
        return self._expr.from_column_names(
            partial(exclude_column_names, names=excluded_names),
            function_name="exclude",
            context=self,
        )


class LazyNamespace(
    CompliantNamespace[CompliantLazyFrameT, LazyExprT],
    Protocol[CompliantLazyFrameT, LazyExprT, NativeFrameT_co],
):
    @property
    def _lazyframe(self) -> type[CompliantLazyFrameT]: ...

    def from_native(self, data: NativeFrameT_co | Any, /) -> CompliantLazyFrameT:
        if self._lazyframe._is_native(data):
            return self._lazyframe.from_native(data, context=self)
        else:  # pragma: no cover
            msg = f"Unsupported type: {type(data).__name__!r}"
            raise TypeError(msg)


class EagerNamespace(
    DepthTrackingNamespace[EagerDataFrameT, EagerExprT],
    Protocol[EagerDataFrameT, EagerSeriesT, EagerExprT, NativeFrameT],
):
    @property
    def _dataframe(self) -> type[EagerDataFrameT]: ...
    @property
    def _series(self) -> type[EagerSeriesT]: ...
    def when(
        self, predicate: EagerExprT
    ) -> EagerWhen[EagerDataFrameT, EagerSeriesT, EagerExprT]: ...

    def from_native(self, data: Any, /) -> EagerDataFrameT | EagerSeriesT:
        if self._dataframe._is_native(data):
            return self._dataframe.from_native(data, context=self)
        elif self._series._is_native(data):
            return self._series.from_native(data, context=self)
        msg = f"Unsupported type: {type(data).__name__!r}"
        raise TypeError(msg)

    @overload
    def from_numpy(self, data: Into1DArray, /, schema: None = ...) -> EagerSeriesT: ...

    @overload
    def from_numpy(
        self,
        data: _2DArray,
        /,
        schema: Mapping[str, DType] | Schema | Sequence[str] | None,
    ) -> EagerDataFrameT: ...

    def from_numpy(
        self,
        data: Into1DArray | _2DArray,
        /,
        schema: Mapping[str, DType] | Schema | Sequence[str] | None = None,
    ) -> EagerDataFrameT | EagerSeriesT:
        if is_numpy_array_2d(data):
            return self._dataframe.from_numpy(data, schema=schema, context=self)
        return self._series.from_numpy(data, context=self)

    def _concat_diagonal(self, dfs: Sequence[NativeFrameT], /) -> NativeFrameT: ...
    def _concat_horizontal(
        self, dfs: Sequence[NativeFrameT | Any], /
    ) -> NativeFrameT: ...
    def _concat_vertical(self, dfs: Sequence[NativeFrameT], /) -> NativeFrameT: ...
    def concat(
        self, items: Iterable[EagerDataFrameT], *, how: ConcatMethod
    ) -> EagerDataFrameT:
        dfs = [item.native for item in items]
        if how == "horizontal":
            native = self._concat_horizontal(dfs)
        elif how == "vertical":
            native = self._concat_vertical(dfs)
        elif how == "diagonal":
            native = self._concat_diagonal(dfs)
        else:  # pragma: no cover
            raise NotImplementedError
        return self._dataframe.from_native(native, context=self)
