from __future__ import annotations

from typing import (
    TYPE_CHECKING,
    Any,
    Generic,
    Iterable,
    Iterator,
    Mapping,
    Protocol,
    Sequence,
)

from narwhals._compliant.any_namespace import (
    CatNamespace,
    DateTimeNamespace,
    ListNamespace,
    StringNamespace,
    StructNamespace,
)
from narwhals._compliant.typing import (
    CompliantSeriesT_co,
    EagerSeriesT_co,
    NativeSeriesT,
    NativeSeriesT_co,
)
from narwhals._translate import FromIterable, FromNative, NumpyConvertible, ToNarwhals
from narwhals._utils import (
    _StoresCompliant,
    _StoresNative,
    is_compliant_series,
    is_sized_multi_index_selector,
    unstable,
)

if TYPE_CHECKING:
    from types import ModuleType

    import pandas as pd
    import polars as pl
    import pyarrow as pa
    from typing_extensions import Self

    from narwhals._compliant.dataframe import CompliantDataFrame
    from narwhals._compliant.expr import CompliantExpr, EagerExpr
    from narwhals._compliant.namespace import CompliantNamespace, EagerNamespace
    from narwhals._utils import Implementation, Version, _FullContext
    from narwhals.dtypes import DType
    from narwhals.series import Series
    from narwhals.typing import (
        ClosedInterval,
        FillNullStrategy,
        Into1DArray,
        IntoDType,
        MultiIndexSelector,
        NonNestedLiteral,
        NumericLiteral,
        RankMethod,
        RollingInterpolationMethod,
        SizedMultiIndexSelector,
        TemporalLiteral,
        _1DArray,
        _SliceIndex,
    )

__all__ = ["CompliantSeries", "EagerSeries"]


class CompliantSeries(
    NumpyConvertible["_1DArray", "Into1DArray"],
    FromIterable,
    FromNative[NativeSeriesT],
    ToNarwhals["Series[NativeSeriesT]"],
    Protocol[NativeSeriesT],
):
    _implementation: Implementation
    _backend_version: tuple[int, ...]
    _version: Version

    @property
    def dtype(self) -> DType: ...
    @property
    def name(self) -> str: ...
    @property
    def native(self) -> NativeSeriesT: ...
    def __narwhals_series__(self) -> Self:
        return self

    def __narwhals_namespace__(self) -> CompliantNamespace[Any, Any]: ...
    def __native_namespace__(self) -> ModuleType: ...
    def __array__(self, dtype: Any, *, copy: bool | None) -> _1DArray: ...
    def __contains__(self, other: Any) -> bool: ...
    def __getitem__(self, item: MultiIndexSelector[Self]) -> Any: ...
    def __iter__(self) -> Iterator[Any]: ...
    def __len__(self) -> int:
        return len(self.native)

    def _with_native(self, series: Any) -> Self: ...
    def _with_version(self, version: Version) -> Self: ...
    def _to_expr(self) -> CompliantExpr[Any, Self]: ...
    @classmethod
    def from_native(cls, data: NativeSeriesT, /, *, context: _FullContext) -> Self: ...
    @classmethod
    def from_numpy(cls, data: Into1DArray, /, *, context: _FullContext) -> Self: ...
    @classmethod
    def from_iterable(
        cls,
        data: Iterable[Any],
        /,
        *,
        context: _FullContext,
        name: str = "",
        dtype: IntoDType | None = None,
    ) -> Self: ...
    def to_narwhals(self) -> Series[NativeSeriesT]:
        return self._version.series(self, level="full")

    # Operators
    def __add__(self, other: Any) -> Self: ...
    def __and__(self, other: Any) -> Self: ...
    def __eq__(self, other: object) -> Self: ...  # type: ignore[override]
    def __floordiv__(self, other: Any) -> Self: ...
    def __ge__(self, other: Any) -> Self: ...
    def __gt__(self, other: Any) -> Self: ...
    def __invert__(self) -> Self: ...
    def __le__(self, other: Any) -> Self: ...
    def __lt__(self, other: Any) -> Self: ...
    def __mod__(self, other: Any) -> Self: ...
    def __mul__(self, other: Any) -> Self: ...
    def __ne__(self, other: object) -> Self: ...  # type: ignore[override]
    def __or__(self, other: Any) -> Self: ...
    def __pow__(self, other: Any) -> Self: ...
    def __radd__(self, other: Any) -> Self: ...
    def __rand__(self, other: Any) -> Self: ...
    def __rfloordiv__(self, other: Any) -> Self: ...
    def __rmod__(self, other: Any) -> Self: ...
    def __rmul__(self, other: Any) -> Self: ...
    def __ror__(self, other: Any) -> Self: ...
    def __rpow__(self, other: Any) -> Self: ...
    def __rsub__(self, other: Any) -> Self: ...
    def __rtruediv__(self, other: Any) -> Self: ...
    def __sub__(self, other: Any) -> Self: ...
    def __truediv__(self, other: Any) -> Self: ...

    def abs(self) -> Self: ...
    def alias(self, name: str) -> Self: ...
    def all(self) -> bool: ...
    def any(self) -> bool: ...
    def arg_max(self) -> int: ...
    def arg_min(self) -> int: ...
    def arg_true(self) -> Self: ...
    def cast(self, dtype: IntoDType) -> Self: ...
    def clip(
        self,
        lower_bound: Self | NumericLiteral | TemporalLiteral | None,
        upper_bound: Self | NumericLiteral | TemporalLiteral | None,
    ) -> Self: ...
    def count(self) -> int: ...
    def cum_count(self, *, reverse: bool) -> Self: ...
    def cum_max(self, *, reverse: bool) -> Self: ...
    def cum_min(self, *, reverse: bool) -> Self: ...
    def cum_prod(self, *, reverse: bool) -> Self: ...
    def cum_sum(self, *, reverse: bool) -> Self: ...
    def diff(self) -> Self: ...
    def drop_nulls(self) -> Self: ...
    def ewm_mean(
        self,
        *,
        com: float | None,
        span: float | None,
        half_life: float | None,
        alpha: float | None,
        adjust: bool,
        min_samples: int,
        ignore_nulls: bool,
    ) -> Self: ...
    def exp(self) -> Self: ...
    def fill_null(
        self,
        value: Self | NonNestedLiteral,
        strategy: FillNullStrategy | None,
        limit: int | None,
    ) -> Self: ...
    def filter(self, predicate: Any) -> Self: ...
    def gather_every(self, n: int, offset: int) -> Self: ...
    @unstable
    def hist(
        self,
        bins: list[float | int] | None,
        *,
        bin_count: int | None,
        include_breakpoint: bool,
    ) -> CompliantDataFrame[Self, Any, Any, Any]: ...
    def head(self, n: int) -> Self: ...
    def is_between(
        self, lower_bound: Any, upper_bound: Any, closed: ClosedInterval
    ) -> Self: ...
    def is_finite(self) -> Self: ...
    def is_first_distinct(self) -> Self: ...
    def is_in(self, other: Any) -> Self: ...
    def is_last_distinct(self) -> Self: ...
    def is_nan(self) -> Self: ...
    def is_null(self) -> Self: ...
    def is_sorted(self, *, descending: bool) -> bool: ...
    def is_unique(self) -> Self: ...
    def item(self, index: int | None) -> Any: ...
    def len(self) -> int: ...
    def log(self, base: float) -> Self: ...
    def max(self) -> Any: ...
    def mean(self) -> float: ...
    def median(self) -> float: ...
    def min(self) -> Any: ...
    def mode(self) -> Self: ...
    def n_unique(self) -> int: ...
    def null_count(self) -> int: ...
    def quantile(
        self, quantile: float, interpolation: RollingInterpolationMethod
    ) -> float: ...
    def rank(self, method: RankMethod, *, descending: bool) -> Self: ...
    def replace_strict(
        self,
        old: Sequence[Any] | Mapping[Any, Any],
        new: Sequence[Any],
        *,
        return_dtype: IntoDType | None,
    ) -> Self: ...
    def rolling_mean(
        self, window_size: int, *, min_samples: int, center: bool
    ) -> Self: ...
    def rolling_std(
        self, window_size: int, *, min_samples: int, center: bool, ddof: int
    ) -> Self: ...
    def rolling_sum(
        self, window_size: int, *, min_samples: int, center: bool
    ) -> Self: ...
    def rolling_var(
        self, window_size: int, *, min_samples: int, center: bool, ddof: int
    ) -> Self: ...
    def round(self, decimals: int) -> Self: ...
    def sample(
        self,
        n: int | None,
        *,
        fraction: float | None,
        with_replacement: bool,
        seed: int | None,
    ) -> Self: ...
    def scatter(self, indices: int | Sequence[int], values: Any) -> Self: ...
    def shift(self, n: int) -> Self: ...
    def skew(self) -> float | None: ...
    def sort(self, *, descending: bool, nulls_last: bool) -> Self: ...
    def std(self, *, ddof: int) -> float: ...
    def sum(self) -> float: ...
    def tail(self, n: int) -> Self: ...
    def to_arrow(self) -> pa.Array[Any]: ...
    def to_dummies(
        self, *, separator: str, drop_first: bool
    ) -> CompliantDataFrame[Self, Any, Any, Any]: ...
    def to_frame(self) -> CompliantDataFrame[Self, Any, Any, Any]: ...
    def to_list(self) -> list[Any]: ...
    def to_pandas(self) -> pd.Series[Any]: ...
    def to_polars(self) -> pl.Series: ...
    def unique(self, *, maintain_order: bool) -> Self: ...
    def value_counts(
        self, *, sort: bool, parallel: bool, name: str | None, normalize: bool
    ) -> CompliantDataFrame[Self, Any, Any, Any]: ...
    def var(self, *, ddof: int) -> float: ...
    def zip_with(self, mask: Any, other: Any) -> Self: ...

    @property
    def str(self) -> Any: ...
    @property
    def dt(self) -> Any: ...
    @property
    def cat(self) -> Any: ...
    @property
    def list(self) -> Any: ...
    @property
    def struct(self) -> Any: ...


class EagerSeries(CompliantSeries[NativeSeriesT], Protocol[NativeSeriesT]):
    _native_series: Any
    _implementation: Implementation
    _backend_version: tuple[int, ...]
    _version: Version
    _broadcast: bool

    def _from_scalar(self, value: Any) -> Self:
        return self.from_iterable([value], name=self.name, context=self)

    def _with_native(
        self, series: NativeSeriesT, *, preserve_broadcast: bool = False
    ) -> Self:
        """Return a new `CompliantSeries`, wrapping the native `series`.

        In cases when operations are known to not affect whether a result should
        be broadcast, we can pass `preserve_broadcast=True`.
        Set this with care - it should only be set for unary expressions which don't
        change length or order, such as `.alias` or `.fill_null`. If in doubt, don't
        set it, you probably don't need it.
        """
        ...

    def __narwhals_namespace__(self) -> EagerNamespace[Any, Self, Any, Any]: ...

    def _to_expr(self) -> EagerExpr[Any, Any]:
        return self.__narwhals_namespace__()._expr._from_series(self)  # type: ignore[no-any-return]

    def _gather(self, rows: SizedMultiIndexSelector[NativeSeriesT]) -> Self: ...
    def _gather_slice(self, rows: _SliceIndex | range) -> Self: ...
    def __getitem__(self, item: MultiIndexSelector[Self]) -> Self:
        if isinstance(item, (slice, range)):
            return self._gather_slice(item)
        elif is_compliant_series(item):
            return self._gather(item.native)
        elif is_sized_multi_index_selector(item):
            return self._gather(item)
        else:  # pragma: no cover
            msg = f"Unreachable code, got unexpected type: {type(item)}"
            raise AssertionError(msg)

    @property
    def str(self) -> EagerSeriesStringNamespace[Self, NativeSeriesT]: ...
    @property
    def dt(self) -> EagerSeriesDateTimeNamespace[Self, NativeSeriesT]: ...
    @property
    def cat(self) -> EagerSeriesCatNamespace[Self, NativeSeriesT]: ...
    @property
    def list(self) -> EagerSeriesListNamespace[Self, NativeSeriesT]: ...
    @property
    def struct(self) -> EagerSeriesStructNamespace[Self, NativeSeriesT]: ...


class _SeriesNamespace(  # type: ignore[misc]
    _StoresCompliant[CompliantSeriesT_co],
    _StoresNative[NativeSeriesT_co],
    Protocol[CompliantSeriesT_co, NativeSeriesT_co],
):
    _compliant_series: CompliantSeriesT_co

    @property
    def compliant(self) -> CompliantSeriesT_co:
        return self._compliant_series

    @property
    def native(self) -> NativeSeriesT_co:
        return self._compliant_series.native  # type: ignore[no-any-return]

    def with_native(self, series: Any, /) -> CompliantSeriesT_co:
        return self.compliant._with_native(series)


class EagerSeriesNamespace(
    _SeriesNamespace[EagerSeriesT_co, NativeSeriesT_co],
    Generic[EagerSeriesT_co, NativeSeriesT_co],
):
    _compliant_series: EagerSeriesT_co

    def __init__(self, series: EagerSeriesT_co, /) -> None:
        self._compliant_series = series


class EagerSeriesCatNamespace(  # type: ignore[misc]
    _SeriesNamespace[EagerSeriesT_co, NativeSeriesT_co],
    CatNamespace[EagerSeriesT_co],
    Protocol[EagerSeriesT_co, NativeSeriesT_co],
): ...


class EagerSeriesDateTimeNamespace(  # type: ignore[misc]
    _SeriesNamespace[EagerSeriesT_co, NativeSeriesT_co],
    DateTimeNamespace[EagerSeriesT_co],
    Protocol[EagerSeriesT_co, NativeSeriesT_co],
): ...


class EagerSeriesListNamespace(  # type: ignore[misc]
    _SeriesNamespace[EagerSeriesT_co, NativeSeriesT_co],
    ListNamespace[EagerSeriesT_co],
    Protocol[EagerSeriesT_co, NativeSeriesT_co],
): ...


class EagerSeriesStringNamespace(  # type: ignore[misc]
    _SeriesNamespace[EagerSeriesT_co, NativeSeriesT_co],
    StringNamespace[EagerSeriesT_co],
    Protocol[EagerSeriesT_co, NativeSeriesT_co],
): ...


class EagerSeriesStructNamespace(  # type: ignore[misc]
    _SeriesNamespace[EagerSeriesT_co, NativeSeriesT_co],
    StructNamespace[EagerSeriesT_co],
    Protocol[EagerSeriesT_co, NativeSeriesT_co],
): ...
