from __future__ import annotations

import os
import re
from datetime import timezone
from enum import Enum, auto
from functools import wraps
from importlib.util import find_spec
from inspect import getattr_static, getdoc
from secrets import token_hex
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Container,
    Generic,
    Iterable,
    Iterator,
    Literal,
    Protocol,
    Sequence,
    TypeVar,
    Union,
    cast,
    overload,
)
from warnings import warn

from narwhals._enum import NoAutoEnum
from narwhals._typing_compat import deprecated
from narwhals.dependencies import (
    get_cudf,
    get_dask,
    get_dask_dataframe,
    get_duckdb,
    get_ibis,
    get_modin,
    get_pandas,
    get_polars,
    get_pyarrow,
    get_pyspark,
    get_pyspark_connect,
    get_pyspark_sql,
    get_sqlframe,
    is_narwhals_series,
    is_narwhals_series_int,
    is_numpy_array_1d,
    is_numpy_array_1d_int,
    is_pandas_dataframe,
    is_pandas_like_dataframe,
    is_pandas_like_series,
    is_pandas_series,
    is_polars_series,
    is_pyarrow_chunked_array,
)
from narwhals.exceptions import ColumnNotFoundError, DuplicateError, InvalidOperationError

if TYPE_CHECKING:
    from types import ModuleType
    from typing import AbstractSet as Set

    import pandas as pd
    import polars as pl
    import pyarrow as pa
    from typing_extensions import (
        Concatenate,
        LiteralString,
        ParamSpec,
        Self,
        TypeAlias,
        TypeIs,
    )

    from narwhals._compliant import (
        CompliantExpr,
        CompliantExprT,
        CompliantFrameT,
        CompliantSeriesOrNativeExprT_co,
        CompliantSeriesT,
        NativeFrameT_co,
        NativeSeriesT_co,
    )
    from narwhals._compliant.typing import EvalNames
    from narwhals._namespace import EagerAllowedImplementation, Namespace
    from narwhals._translate import ArrowStreamExportable, IntoArrowTable, ToNarwhalsT_co
    from narwhals.dataframe import DataFrame, LazyFrame
    from narwhals.dtypes import DType
    from narwhals.series import Series
    from narwhals.typing import (
        CompliantDataFrame,
        CompliantLazyFrame,
        CompliantSeries,
        DataFrameLike,
        DTypes,
        IntoSeriesT,
        MultiIndexSelector,
        SingleIndexSelector,
        SizedMultiIndexSelector,
        SizeUnit,
        SupportsNativeNamespace,
        TimeUnit,
        _1DArray,
        _SliceIndex,
        _SliceName,
        _SliceNone,
    )

    FrameOrSeriesT = TypeVar(
        "FrameOrSeriesT", bound=Union[LazyFrame[Any], DataFrame[Any], Series[Any]]
    )

    _T1 = TypeVar("_T1")
    _T2 = TypeVar("_T2")
    _T3 = TypeVar("_T3")
    _Fn = TypeVar("_Fn", bound="Callable[..., Any]")
    P = ParamSpec("P")
    R = TypeVar("R")
    R1 = TypeVar("R1")
    R2 = TypeVar("R2")

    class _SupportsVersion(Protocol):
        __version__: str

    class _SupportsGet(Protocol):  # noqa: PYI046
        def __get__(self, instance: Any, owner: Any | None = None, /) -> Any: ...

    class _StoresImplementation(Protocol):
        _implementation: Implementation
        """Implementation of native object (pandas, Polars, PyArrow, ...)."""

    class _StoresBackendVersion(Protocol):
        _backend_version: tuple[int, ...]
        """Version tuple for a native package."""

    class _StoresVersion(Protocol):
        _version: Version
        """Narwhals API version (V1 or MAIN)."""

    class _LimitedContext(_StoresBackendVersion, _StoresVersion, Protocol):
        """Provides 2 attributes.

        - `_backend_version`
        - `_version`
        """

    class _FullContext(_StoresImplementation, _LimitedContext, Protocol):
        """Provides 3 attributes.

        - `_implementation`
        - `_backend_version`
        - `_version`
        """

    class _StoresColumns(Protocol):
        @property
        def columns(self) -> Sequence[str]: ...


_T = TypeVar("_T")
NativeT_co = TypeVar("NativeT_co", covariant=True)
CompliantT_co = TypeVar("CompliantT_co", covariant=True)
_ContextT = TypeVar("_ContextT", bound="_FullContext")
_Method: TypeAlias = "Callable[Concatenate[_ContextT, P], R]"
_Constructor: TypeAlias = "Callable[Concatenate[_T, P], R2]"


class _StoresNative(Protocol[NativeT_co]):  # noqa: PYI046
    """Provides access to a native object.

    Native objects have types like:

    >>> from pandas import Series
    >>> from pyarrow import Table
    """

    @property
    def native(self) -> NativeT_co:
        """Return the native object."""
        ...


class _StoresCompliant(Protocol[CompliantT_co]):  # noqa: PYI046
    """Provides access to a compliant object.

    Compliant objects have types like:

    >>> from narwhals._pandas_like.series import PandasLikeSeries
    >>> from narwhals._arrow.dataframe import ArrowDataFrame
    """

    @property
    def compliant(self) -> CompliantT_co:
        """Return the compliant object."""
        ...


class Version(Enum):
    V1 = auto()
    MAIN = auto()

    @property
    def namespace(self) -> type[Namespace[Any]]:
        if self is Version.MAIN:
            from narwhals._namespace import Namespace

            return Namespace
        from narwhals.stable.v1._namespace import Namespace

        return Namespace

    @property
    def dtypes(self) -> DTypes:
        if self is Version.MAIN:
            from narwhals import dtypes

            return dtypes
        from narwhals.stable.v1 import dtypes as v1_dtypes

        return v1_dtypes

    @property
    def dataframe(self) -> type[DataFrame[Any]]:
        if self is Version.MAIN:
            from narwhals.dataframe import DataFrame

            return DataFrame
        from narwhals.stable.v1 import DataFrame as DataFrameV1

        return DataFrameV1

    @property
    def lazyframe(self) -> type[LazyFrame[Any]]:
        if self is Version.MAIN:
            from narwhals.dataframe import LazyFrame

            return LazyFrame
        from narwhals.stable.v1 import LazyFrame as LazyFrameV1

        return LazyFrameV1

    @property
    def series(self) -> type[Series[Any]]:
        if self is Version.MAIN:
            from narwhals.series import Series

            return Series
        from narwhals.stable.v1 import Series as SeriesV1

        return SeriesV1


class Implementation(NoAutoEnum):
    """Implementation of native object (pandas, Polars, PyArrow, ...)."""

    PANDAS = "pandas"
    """pandas implementation."""
    MODIN = "modin"
    """Modin implementation."""
    CUDF = "cudf"
    """cuDF implementation."""
    PYARROW = "pyarrow"
    """PyArrow implementation."""
    PYSPARK = "pyspark"
    """PySpark implementation."""
    POLARS = "polars"
    """Polars implementation."""
    DASK = "dask"
    """Dask implementation."""
    DUCKDB = "duckdb"
    """DuckDB implementation."""
    IBIS = "ibis"
    """Ibis implementation."""
    SQLFRAME = "sqlframe"
    """SQLFrame implementation."""
    PYSPARK_CONNECT = "pyspark[connect]"
    """PySpark Connect implementation."""
    UNKNOWN = "unknown"
    """Unknown implementation."""

    def __str__(self) -> str:
        return str(self.value)

    @classmethod
    def from_native_namespace(
        cls: type[Self], native_namespace: ModuleType
    ) -> Implementation:  # pragma: no cover
        """Instantiate Implementation object from a native namespace module.

        Arguments:
            native_namespace: Native namespace.

        Returns:
            Implementation.
        """
        mapping = {
            get_pandas(): Implementation.PANDAS,
            get_modin(): Implementation.MODIN,
            get_cudf(): Implementation.CUDF,
            get_pyarrow(): Implementation.PYARROW,
            get_pyspark_sql(): Implementation.PYSPARK,
            get_polars(): Implementation.POLARS,
            get_dask_dataframe(): Implementation.DASK,
            get_duckdb(): Implementation.DUCKDB,
            get_ibis(): Implementation.IBIS,
            get_sqlframe(): Implementation.SQLFRAME,
            get_pyspark_connect(): Implementation.PYSPARK_CONNECT,
        }
        return mapping.get(native_namespace, Implementation.UNKNOWN)

    @classmethod
    def from_string(
        cls: type[Self], backend_name: str
    ) -> Implementation:  # pragma: no cover
        """Instantiate Implementation object from a native namespace module.

        Arguments:
            backend_name: Name of backend, expressed as string.

        Returns:
            Implementation.
        """
        try:
            return cls(backend_name)
        except ValueError:
            return Implementation.UNKNOWN

    @classmethod
    def from_backend(
        cls: type[Self], backend: str | Implementation | ModuleType
    ) -> Implementation:
        """Instantiate from native namespace module, string, or Implementation.

        Arguments:
            backend: Backend to instantiate Implementation from.

        Returns:
            Implementation.
        """
        return (
            cls.from_string(backend)
            if isinstance(backend, str)
            else backend
            if isinstance(backend, Implementation)
            else cls.from_native_namespace(backend)
        )

    def to_native_namespace(self) -> ModuleType:  # noqa: C901, PLR0911
        """Return the native namespace module corresponding to Implementation.

        Returns:
            Native module.
        """
        if self is Implementation.PANDAS:
            import pandas as pd  # ignore-banned-import

            return pd
        if self is Implementation.MODIN:
            import modin.pandas

            return modin.pandas
        if self is Implementation.CUDF:  # pragma: no cover
            import cudf  # ignore-banned-import

            return cudf
        if self is Implementation.PYARROW:
            import pyarrow as pa  # ignore-banned-import

            return pa
        if self is Implementation.PYSPARK:  # pragma: no cover
            import pyspark.sql

            return pyspark.sql
        if self is Implementation.POLARS:
            import polars as pl  # ignore-banned-import

            return pl
        if self is Implementation.DASK:
            import dask.dataframe  # ignore-banned-import

            return dask.dataframe

        if self is Implementation.DUCKDB:
            import duckdb  # ignore-banned-import

            return duckdb

        if self is Implementation.SQLFRAME:
            import sqlframe  # ignore-banned-import

            return sqlframe

        if self is Implementation.IBIS:
            import ibis  # ignore-banned-import

            return ibis

        if self is Implementation.PYSPARK_CONNECT:  # pragma: no cover
            import pyspark.sql.connect  # ignore-banned-import

            return pyspark.sql.connect

        msg = "Not supported Implementation"  # pragma: no cover
        raise AssertionError(msg)

    def is_pandas(self) -> bool:
        """Return whether implementation is pandas.

        Returns:
            Boolean.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pandas()
            True
        """
        return self is Implementation.PANDAS

    def is_pandas_like(self) -> bool:
        """Return whether implementation is pandas, Modin, or cuDF.

        Returns:
            Boolean.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pandas_like()
            True
        """
        return self in {Implementation.PANDAS, Implementation.MODIN, Implementation.CUDF}

    def is_spark_like(self) -> bool:
        """Return whether implementation is pyspark or sqlframe.

        Returns:
            Boolean.

        Examples:
            >>> import pandas as pd
            >>> import narwhals as nw
            >>> df_native = pd.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_spark_like()
            False
        """
        return self in {
            Implementation.PYSPARK,
            Implementation.SQLFRAME,
            Implementation.PYSPARK_CONNECT,
        }

    def is_polars(self) -> bool:
        """Return whether implementation is Polars.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_polars()
            True
        """
        return self is Implementation.POLARS

    def is_cudf(self) -> bool:
        """Return whether implementation is cuDF.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_cudf()
            False
        """
        return self is Implementation.CUDF  # pragma: no cover

    def is_modin(self) -> bool:
        """Return whether implementation is Modin.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_modin()
            False
        """
        return self is Implementation.MODIN  # pragma: no cover

    def is_pyspark(self) -> bool:
        """Return whether implementation is PySpark.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pyspark()
            False
        """
        return self is Implementation.PYSPARK  # pragma: no cover

    def is_pyspark_connect(self) -> bool:
        """Return whether implementation is PySpark.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pyspark_connect()
            False
        """
        return self is Implementation.PYSPARK_CONNECT  # pragma: no cover

    def is_pyarrow(self) -> bool:
        """Return whether implementation is PyArrow.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_pyarrow()
            False
        """
        return self is Implementation.PYARROW  # pragma: no cover

    def is_dask(self) -> bool:
        """Return whether implementation is Dask.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_dask()
            False
        """
        return self is Implementation.DASK  # pragma: no cover

    def is_duckdb(self) -> bool:
        """Return whether implementation is DuckDB.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_duckdb()
            False
        """
        return self is Implementation.DUCKDB  # pragma: no cover

    def is_ibis(self) -> bool:
        """Return whether implementation is Ibis.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_ibis()
            False
        """
        return self is Implementation.IBIS  # pragma: no cover

    def is_sqlframe(self) -> bool:
        """Return whether implementation is SQLFrame.

        Returns:
            Boolean.

        Examples:
            >>> import polars as pl
            >>> import narwhals as nw
            >>> df_native = pl.DataFrame({"a": [1, 2, 3]})
            >>> df = nw.from_native(df_native)
            >>> df.implementation.is_sqlframe()
            False
        """
        return self is Implementation.SQLFRAME  # pragma: no cover

    def _backend_version(self) -> tuple[int, ...]:
        native = self.to_native_namespace()
        into_version: Any
        if self not in {
            Implementation.PYSPARK,
            Implementation.PYSPARK_CONNECT,
            Implementation.DASK,
            Implementation.SQLFRAME,
        }:
            into_version = native
        elif self in {Implementation.PYSPARK, Implementation.PYSPARK_CONNECT}:
            into_version = get_pyspark()  # pragma: no cover
        elif self is Implementation.DASK:
            into_version = get_dask()
        else:
            import sqlframe._version

            into_version = sqlframe._version
        return parse_version(into_version)


MIN_VERSIONS: dict[Implementation, tuple[int, ...]] = {
    Implementation.PANDAS: (0, 25, 3),
    Implementation.MODIN: (0, 25, 3),
    Implementation.CUDF: (24, 10),
    Implementation.PYARROW: (11,),
    Implementation.PYSPARK: (3, 5),
    Implementation.PYSPARK_CONNECT: (3, 5),
    Implementation.POLARS: (0, 20, 3),
    Implementation.DASK: (2024, 8),
    Implementation.DUCKDB: (1,),
    Implementation.IBIS: (6,),
    Implementation.SQLFRAME: (3, 22, 0),
}


def validate_backend_version(
    implementation: Implementation, backend_version: tuple[int, ...]
) -> None:
    if backend_version < (min_version := MIN_VERSIONS[implementation]):
        msg = f"Minimum version of {implementation} supported by Narwhals is {min_version}, found: {backend_version}"
        raise ValueError(msg)


def remove_prefix(text: str, prefix: str) -> str:  # pragma: no cover
    if text.startswith(prefix):
        return text[len(prefix) :]
    return text


def remove_suffix(text: str, suffix: str) -> str:  # pragma: no cover
    if text.endswith(suffix):
        return text[: -len(suffix)]
    return text  # pragma: no cover


def flatten(args: Any) -> list[Any]:
    return list(args[0] if (len(args) == 1 and _is_iterable(args[0])) else args)


def tupleify(arg: Any) -> Any:
    if not isinstance(arg, (list, tuple)):  # pragma: no cover
        return (arg,)
    return arg


def _is_iterable(arg: Any | Iterable[Any]) -> bool:
    from narwhals.series import Series

    if is_pandas_dataframe(arg) or is_pandas_series(arg):
        msg = f"Expected Narwhals class or scalar, got: {qualified_type_name(arg)!r}. Perhaps you forgot a `nw.from_native` somewhere?"
        raise TypeError(msg)
    if (pl := get_polars()) is not None and isinstance(
        arg, (pl.Series, pl.Expr, pl.DataFrame, pl.LazyFrame)
    ):
        msg = (
            f"Expected Narwhals class or scalar, got: {qualified_type_name(arg)!r}.\n\n"
            "Hint: Perhaps you\n"
            "- forgot a `nw.from_native` somewhere?\n"
            "- used `pl.col` instead of `nw.col`?"
        )
        raise TypeError(msg)

    return isinstance(arg, Iterable) and not isinstance(arg, (str, bytes, Series))


def parse_version(version: str | ModuleType | _SupportsVersion) -> tuple[int, ...]:
    """Simple version parser; split into a tuple of ints for comparison.

    Arguments:
        version: Version string, or object with one, to parse.

    Returns:
        Parsed version number.
    """
    # lifted from Polars
    # [marco]: Take care of DuckDB pre-releases which end with e.g. `-dev4108`
    # and pandas pre-releases which end with e.g. .dev0+618.gb552dc95c9
    version_str = version if isinstance(version, str) else version.__version__
    version_str = re.sub(r"(\D?dev.*$)", "", version_str)
    return tuple(int(re.sub(r"\D", "", v)) for v in version_str.split("."))


@overload
def isinstance_or_issubclass(
    obj_or_cls: type, cls_or_tuple: type[_T]
) -> TypeIs[type[_T]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: object | type, cls_or_tuple: type[_T]
) -> TypeIs[_T | type[_T]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: type, cls_or_tuple: tuple[type[_T1], type[_T2]]
) -> TypeIs[type[_T1 | _T2]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: object | type, cls_or_tuple: tuple[type[_T1], type[_T2]]
) -> TypeIs[_T1 | _T2 | type[_T1 | _T2]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: type, cls_or_tuple: tuple[type[_T1], type[_T2], type[_T3]]
) -> TypeIs[type[_T1 | _T2 | _T3]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: object | type, cls_or_tuple: tuple[type[_T1], type[_T2], type[_T3]]
) -> TypeIs[_T1 | _T2 | _T3 | type[_T1 | _T2 | _T3]]: ...


@overload
def isinstance_or_issubclass(
    obj_or_cls: Any, cls_or_tuple: tuple[type, ...]
) -> TypeIs[Any]: ...


def isinstance_or_issubclass(obj_or_cls: Any, cls_or_tuple: Any) -> bool:
    from narwhals.dtypes import DType

    if isinstance(obj_or_cls, DType):
        return isinstance(obj_or_cls, cls_or_tuple)
    return isinstance(obj_or_cls, cls_or_tuple) or (
        isinstance(obj_or_cls, type) and issubclass(obj_or_cls, cls_or_tuple)
    )


def validate_laziness(items: Iterable[Any]) -> None:
    from narwhals.dataframe import DataFrame, LazyFrame

    if all(isinstance(item, DataFrame) for item in items) or (
        all(isinstance(item, LazyFrame) for item in items)
    ):
        return
    msg = f"The items to concatenate should either all be eager, or all lazy, got: {[type(item) for item in items]}"
    raise TypeError(msg)


def maybe_align_index(
    lhs: FrameOrSeriesT, rhs: Series[Any] | DataFrame[Any] | LazyFrame[Any]
) -> FrameOrSeriesT:
    """Align `lhs` to the Index of `rhs`, if they're both pandas-like.

    Arguments:
        lhs: Dataframe or Series.
        rhs: Dataframe or Series to align with.

    Returns:
        Same type as input.

    Notes:
        This is only really intended for backwards-compatibility purposes,
        for example if your library already aligns indices for users.
        If you're designing a new library, we highly encourage you to not
        rely on the Index.
        For non-pandas-like inputs, this only checks that `lhs` and `rhs`
        are the same length.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> df_pd = pd.DataFrame({"a": [1, 2]}, index=[3, 4])
        >>> s_pd = pd.Series([6, 7], index=[4, 3])
        >>> df = nw.from_native(df_pd)
        >>> s = nw.from_native(s_pd, series_only=True)
        >>> nw.to_native(nw.maybe_align_index(df, s))
           a
        4  2
        3  1
    """
    from narwhals._pandas_like.dataframe import PandasLikeDataFrame
    from narwhals._pandas_like.series import PandasLikeSeries

    def _validate_index(index: Any) -> None:
        if not index.is_unique:
            msg = "given index doesn't have a unique index"
            raise ValueError(msg)

    lhs_any = cast("Any", lhs)
    rhs_any = cast("Any", rhs)
    if isinstance(
        getattr(lhs_any, "_compliant_frame", None), PandasLikeDataFrame
    ) and isinstance(getattr(rhs_any, "_compliant_frame", None), PandasLikeDataFrame):
        _validate_index(lhs_any._compliant_frame.native.index)
        _validate_index(rhs_any._compliant_frame.native.index)
        return lhs_any._with_compliant(
            lhs_any._compliant_frame._with_native(
                lhs_any._compliant_frame.native.loc[rhs_any._compliant_frame.native.index]
            )
        )
    if isinstance(
        getattr(lhs_any, "_compliant_frame", None), PandasLikeDataFrame
    ) and isinstance(getattr(rhs_any, "_compliant_series", None), PandasLikeSeries):
        _validate_index(lhs_any._compliant_frame.native.index)
        _validate_index(rhs_any._compliant_series.native.index)
        return lhs_any._with_compliant(
            lhs_any._compliant_frame._with_native(
                lhs_any._compliant_frame.native.loc[
                    rhs_any._compliant_series.native.index
                ]
            )
        )
    if isinstance(
        getattr(lhs_any, "_compliant_series", None), PandasLikeSeries
    ) and isinstance(getattr(rhs_any, "_compliant_frame", None), PandasLikeDataFrame):
        _validate_index(lhs_any._compliant_series.native.index)
        _validate_index(rhs_any._compliant_frame.native.index)
        return lhs_any._with_compliant(
            lhs_any._compliant_series._with_native(
                lhs_any._compliant_series.native.loc[
                    rhs_any._compliant_frame.native.index
                ]
            )
        )
    if isinstance(
        getattr(lhs_any, "_compliant_series", None), PandasLikeSeries
    ) and isinstance(getattr(rhs_any, "_compliant_series", None), PandasLikeSeries):
        _validate_index(lhs_any._compliant_series.native.index)
        _validate_index(rhs_any._compliant_series.native.index)
        return lhs_any._with_compliant(
            lhs_any._compliant_series._with_native(
                lhs_any._compliant_series.native.loc[
                    rhs_any._compliant_series.native.index
                ]
            )
        )
    if len(lhs_any) != len(rhs_any):
        msg = f"Expected `lhs` and `rhs` to have the same length, got {len(lhs_any)} and {len(rhs_any)}"
        raise ValueError(msg)
    return lhs


def maybe_get_index(obj: DataFrame[Any] | LazyFrame[Any] | Series[Any]) -> Any | None:
    """Get the index of a DataFrame or a Series, if it's pandas-like.

    Arguments:
        obj: Dataframe or Series.

    Returns:
        Same type as input.

    Notes:
        This is only really intended for backwards-compatibility purposes,
        for example if your library already aligns indices for users.
        If you're designing a new library, we highly encourage you to not
        rely on the Index.
        For non-pandas-like inputs, this returns `None`.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]})
        >>> df = nw.from_native(df_pd)
        >>> nw.maybe_get_index(df)
        RangeIndex(start=0, stop=2, step=1)
        >>> series_pd = pd.Series([1, 2])
        >>> series = nw.from_native(series_pd, series_only=True)
        >>> nw.maybe_get_index(series)
        RangeIndex(start=0, stop=2, step=1)
    """
    obj_any = cast("Any", obj)
    native_obj = obj_any.to_native()
    if is_pandas_like_dataframe(native_obj) or is_pandas_like_series(native_obj):
        return native_obj.index
    return None


def maybe_set_index(
    obj: FrameOrSeriesT,
    column_names: str | list[str] | None = None,
    *,
    index: Series[IntoSeriesT] | list[Series[IntoSeriesT]] | None = None,
) -> FrameOrSeriesT:
    """Set the index of a DataFrame or a Series, if it's pandas-like.

    Arguments:
        obj: object for which maybe set the index (can be either a Narwhals `DataFrame`
            or `Series`).
        column_names: name or list of names of the columns to set as index.
            For dataframes, only one of `column_names` and `index` can be specified but
            not both. If `column_names` is passed and `df` is a Series, then a
            `ValueError` is raised.
        index: series or list of series to set as index.

    Returns:
        Same type as input.

    Raises:
        ValueError: If one of the following conditions happens

            - none of `column_names` and `index` are provided
            - both `column_names` and `index` are provided
            - `column_names` is provided and `df` is a Series

    Notes:
        This is only really intended for backwards-compatibility purposes, for example if
        your library already aligns indices for users.
        If you're designing a new library, we highly encourage you to not
        rely on the Index.

        For non-pandas-like inputs, this is a no-op.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]})
        >>> df = nw.from_native(df_pd)
        >>> nw.to_native(nw.maybe_set_index(df, "b"))  # doctest: +NORMALIZE_WHITESPACE
           a
        b
        4  1
        5  2
    """
    from narwhals.translate import to_native

    df_any = cast("Any", obj)
    native_obj = df_any.to_native()

    if column_names is not None and index is not None:
        msg = "Only one of `column_names` or `index` should be provided"
        raise ValueError(msg)

    if not column_names and index is None:
        msg = "Either `column_names` or `index` should be provided"
        raise ValueError(msg)

    if index is not None:
        keys = (
            [to_native(idx, pass_through=True) for idx in index]
            if _is_iterable(index)
            else to_native(index, pass_through=True)
        )
    else:
        keys = column_names

    if is_pandas_like_dataframe(native_obj):
        return df_any._with_compliant(
            df_any._compliant_frame._with_native(native_obj.set_index(keys))
        )
    elif is_pandas_like_series(native_obj):
        from narwhals._pandas_like.utils import set_index

        if column_names:
            msg = "Cannot set index using column names on a Series"
            raise ValueError(msg)

        native_obj = set_index(
            native_obj,
            keys,
            implementation=obj._compliant_series._implementation,  # type: ignore[union-attr]
            backend_version=obj._compliant_series._backend_version,  # type: ignore[union-attr]
        )
        return df_any._with_compliant(df_any._compliant_series._with_native(native_obj))
    else:
        return df_any


def maybe_reset_index(obj: FrameOrSeriesT) -> FrameOrSeriesT:
    """Reset the index to the default integer index of a DataFrame or a Series, if it's pandas-like.

    Arguments:
        obj: Dataframe or Series.

    Returns:
        Same type as input.

    Notes:
        This is only really intended for backwards-compatibility purposes,
        for example if your library already resets the index for users.
        If you're designing a new library, we highly encourage you to not
        rely on the Index.
        For non-pandas-like inputs, this is a no-op.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]}, index=([6, 7]))
        >>> df = nw.from_native(df_pd)
        >>> nw.to_native(nw.maybe_reset_index(df))
           a  b
        0  1  4
        1  2  5
        >>> series_pd = pd.Series([1, 2])
        >>> series = nw.from_native(series_pd, series_only=True)
        >>> nw.maybe_get_index(series)
        RangeIndex(start=0, stop=2, step=1)
    """
    obj_any = cast("Any", obj)
    native_obj = obj_any.to_native()
    if is_pandas_like_dataframe(native_obj):
        native_namespace = obj_any.__native_namespace__()
        if _has_default_index(native_obj, native_namespace):
            return obj_any
        return obj_any._with_compliant(
            obj_any._compliant_frame._with_native(native_obj.reset_index(drop=True))
        )
    if is_pandas_like_series(native_obj):
        native_namespace = obj_any.__native_namespace__()
        if _has_default_index(native_obj, native_namespace):
            return obj_any
        return obj_any._with_compliant(
            obj_any._compliant_series._with_native(native_obj.reset_index(drop=True))
        )
    return obj_any


def _is_range_index(obj: Any, native_namespace: Any) -> TypeIs[pd.RangeIndex]:
    return isinstance(obj, native_namespace.RangeIndex)


def _has_default_index(
    native_frame_or_series: pd.Series[Any] | pd.DataFrame, native_namespace: Any
) -> bool:
    index = native_frame_or_series.index
    return (
        _is_range_index(index, native_namespace)
        and index.start == 0
        and index.stop == len(index)
        and index.step == 1
    )


def maybe_convert_dtypes(
    obj: FrameOrSeriesT, *args: bool, **kwargs: bool | str
) -> FrameOrSeriesT:
    """Convert columns or series to the best possible dtypes using dtypes supporting ``pd.NA``, if df is pandas-like.

    Arguments:
        obj: DataFrame or Series.
        *args: Additional arguments which gets passed through.
        **kwargs: Additional arguments which gets passed through.

    Returns:
        Same type as input.

    Notes:
        For non-pandas-like inputs, this is a no-op.
        Also, `args` and `kwargs` just get passed down to the underlying library as-is.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> import numpy as np
        >>> df_pd = pd.DataFrame(
        ...     {
        ...         "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")),
        ...         "b": pd.Series([True, False, np.nan], dtype=np.dtype("O")),
        ...     }
        ... )
        >>> df = nw.from_native(df_pd)
        >>> nw.to_native(
        ...     nw.maybe_convert_dtypes(df)
        ... ).dtypes  # doctest: +NORMALIZE_WHITESPACE
        a             Int32
        b           boolean
        dtype: object
    """
    obj_any = cast("Any", obj)
    native_obj = obj_any.to_native()
    if is_pandas_like_dataframe(native_obj):
        return obj_any._with_compliant(
            obj_any._compliant_frame._with_native(
                native_obj.convert_dtypes(*args, **kwargs)
            )
        )
    if is_pandas_like_series(native_obj):
        return obj_any._with_compliant(
            obj_any._compliant_series._with_native(
                native_obj.convert_dtypes(*args, **kwargs)
            )
        )
    return obj_any


def scale_bytes(sz: int, unit: SizeUnit) -> int | float:
    """Scale size in bytes to other size units (eg: "kb", "mb", "gb", "tb").

    Arguments:
        sz: original size in bytes
        unit: size unit to convert into

    Returns:
        Integer or float.
    """
    if unit in {"b", "bytes"}:
        return sz
    elif unit in {"kb", "kilobytes"}:
        return sz / 1024
    elif unit in {"mb", "megabytes"}:
        return sz / 1024**2
    elif unit in {"gb", "gigabytes"}:
        return sz / 1024**3
    elif unit in {"tb", "terabytes"}:
        return sz / 1024**4
    else:
        msg = f"`unit` must be one of {{'b', 'kb', 'mb', 'gb', 'tb'}}, got {unit!r}"
        raise ValueError(msg)


def is_ordered_categorical(series: Series[Any]) -> bool:
    """Return whether indices of categories are semantically meaningful.

    This is a convenience function to accessing what would otherwise be
    the `is_ordered` property from the DataFrame Interchange Protocol,
    see https://data-apis.org/dataframe-protocol/latest/API.html.

    - For Polars:
      - Enums are always ordered.
      - Categoricals are ordered if `dtype.ordering == "physical"`.
    - For pandas-like APIs:
      - Categoricals are ordered if `dtype.cat.ordered == True`.
    - For PyArrow table:
      - Categoricals are ordered if `dtype.type.ordered == True`.

    Arguments:
        series: Input Series.

    Returns:
        Whether the Series is an ordered categorical.

    Examples:
        >>> import narwhals as nw
        >>> import pandas as pd
        >>> import polars as pl
        >>> data = ["x", "y"]
        >>> s_pd = pd.Series(data, dtype=pd.CategoricalDtype(ordered=True))
        >>> s_pl = pl.Series(data, dtype=pl.Categorical(ordering="physical"))

        Let's define a library-agnostic function:

        >>> @nw.narwhalify
        ... def func(s):
        ...     return nw.is_ordered_categorical(s)

        Then, we can pass any supported library to `func`:

        >>> func(s_pd)
        True
        >>> func(s_pl)
        True
    """
    from narwhals._interchange.series import InterchangeSeries

    dtypes = series._compliant_series._version.dtypes
    compliant = series._compliant_series
    # If it doesn't match any branches, let's just play it safe and return False.
    result: bool = False
    if isinstance(compliant, InterchangeSeries) and isinstance(
        series.dtype, dtypes.Categorical
    ):
        result = compliant.native.describe_categorical["is_ordered"]
    elif series.dtype == dtypes.Enum:
        result = True
    elif series.dtype != dtypes.Categorical:
        result = False
    else:
        native = series.to_native()
        if is_polars_series(native):
            result = cast("pl.Categorical", native.dtype).ordering == "physical"
        elif is_pandas_like_series(native):
            result = bool(native.cat.ordered)
        elif is_pyarrow_chunked_array(native):
            from narwhals._arrow.utils import is_dictionary

            result = is_dictionary(native.type) and native.type.ordered
    return result


def generate_unique_token(
    n_bytes: int, columns: Sequence[str]
) -> str:  # pragma: no cover
    msg = (
        "Use `generate_temporary_column_name` instead. `generate_unique_token` is "
        "deprecated and it will be removed in future versions"
    )
    issue_deprecation_warning(msg, _version="1.13.0")
    return generate_temporary_column_name(n_bytes=n_bytes, columns=columns)


def generate_temporary_column_name(n_bytes: int, columns: Sequence[str]) -> str:
    """Generates a unique column name that is not present in the given list of columns.

    It relies on [python secrets token_hex](https://docs.python.org/3/library/secrets.html#secrets.token_hex)
    function to return a string nbytes random bytes.

    Arguments:
        n_bytes: The number of bytes to generate for the token.
        columns: The list of columns to check for uniqueness.

    Returns:
        A unique token that is not present in the given list of columns.

    Raises:
        AssertionError: If a unique token cannot be generated after 100 attempts.

    Examples:
        >>> import narwhals as nw
        >>> columns = ["abc", "xyz"]
        >>> nw.generate_temporary_column_name(n_bytes=8, columns=columns) not in columns
        True
    """
    counter = 0
    while True:
        token = token_hex(n_bytes)
        if token not in columns:
            return token

        counter += 1
        if counter > 100:
            msg = (
                "Internal Error: Narwhals was not able to generate a column name with "
                f"{n_bytes=} and not in {columns}"
            )
            raise AssertionError(msg)


def parse_columns_to_drop(
    frame: _StoresColumns, subset: Iterable[str], /, *, strict: bool
) -> list[str]:
    if not strict:
        return list(set(frame.columns).intersection(subset))
    to_drop = list(subset)
    if error := check_columns_exist(to_drop, available=frame.columns):
        raise error
    return to_drop


def is_sequence_but_not_str(sequence: Sequence[_T] | Any) -> TypeIs[Sequence[_T]]:
    return isinstance(sequence, Sequence) and not isinstance(sequence, str)


def is_slice_none(obj: Any) -> TypeIs[_SliceNone]:
    return isinstance(obj, slice) and obj == slice(None)


def is_sized_multi_index_selector(
    obj: Any,
) -> TypeIs[SizedMultiIndexSelector[Series[Any] | CompliantSeries[Any]]]:
    return (
        (
            is_sequence_but_not_str(obj)
            and ((len(obj) > 0 and isinstance(obj[0], int)) or (len(obj) == 0))
        )
        or is_numpy_array_1d_int(obj)
        or is_narwhals_series_int(obj)
        or is_compliant_series_int(obj)
    )


def is_sequence_like(
    obj: Sequence[_T] | Any,
) -> TypeIs[Sequence[_T] | Series[Any] | _1DArray]:
    return (
        is_sequence_but_not_str(obj)
        or is_numpy_array_1d(obj)
        or is_narwhals_series(obj)
        or is_compliant_series(obj)
    )


def is_slice_index(obj: Any) -> TypeIs[_SliceIndex]:
    return isinstance(obj, slice) and (
        isinstance(obj.start, int)
        or isinstance(obj.stop, int)
        or (isinstance(obj.step, int) and obj.start is None and obj.stop is None)
    )


def is_range(obj: Any) -> TypeIs[range]:
    return isinstance(obj, range)


def is_single_index_selector(obj: Any) -> TypeIs[SingleIndexSelector]:
    return bool(isinstance(obj, int) and not isinstance(obj, bool))


def is_index_selector(
    obj: Any,
) -> TypeIs[SingleIndexSelector | MultiIndexSelector[Series[Any] | CompliantSeries[Any]]]:
    return (
        is_single_index_selector(obj)
        or is_sized_multi_index_selector(obj)
        or is_slice_index(obj)
    )


def is_list_of(obj: Any, tp: type[_T]) -> TypeIs[list[_T]]:
    # Check if an object is a list of `tp`, only sniffing the first element.
    return bool(isinstance(obj, list) and obj and isinstance(obj[0], tp))


def is_sequence_of(obj: Any, tp: type[_T]) -> TypeIs[Sequence[_T]]:
    # Check if an object is a sequence of `tp`, only sniffing the first element.
    return bool(
        is_sequence_but_not_str(obj)
        and (first := next(iter(obj), None))
        and isinstance(first, tp)
    )


def find_stacklevel() -> int:
    """Find the first place in the stack that is not inside narwhals.

    Returns:
        Stacklevel.

    Taken from:
    https://github.com/pandas-dev/pandas/blob/ab89c53f48df67709a533b6a95ce3d911871a0a8/pandas/util/_exceptions.py#L30-L51
    """
    import inspect
    from pathlib import Path

    import narwhals as nw

    pkg_dir = str(Path(nw.__file__).parent)

    # https://stackoverflow.com/questions/17407119/python-inspect-stack-is-slow
    frame = inspect.currentframe()
    n = 0
    try:
        while frame:
            fname = inspect.getfile(frame)
            if fname.startswith(pkg_dir) or (
                (qualname := getattr(frame.f_code, "co_qualname", None))
                # ignore @singledispatch wrappers
                and qualname.startswith("singledispatch.")
            ):
                frame = frame.f_back
                n += 1
            else:  # pragma: no cover
                break
        else:  # pragma: no cover
            pass
    finally:
        # https://docs.python.org/3/library/inspect.html
        # > Though the cycle detector will catch these, destruction of the frames
        # > (and local variables) can be made deterministic by removing the cycle
        # > in a finally clause.
        del frame
    return n


def issue_deprecation_warning(message: str, _version: str) -> None:
    """Issue a deprecation warning.

    Arguments:
        message: The message associated with the warning.
        _version: Narwhals version when the warning was introduced. Just used for internal
            bookkeeping.
    """
    warn(message=message, category=DeprecationWarning, stacklevel=find_stacklevel())


def validate_strict_and_pass_though(
    strict: bool | None,  # noqa: FBT001
    pass_through: bool | None,  # noqa: FBT001
    *,
    pass_through_default: bool,
    emit_deprecation_warning: bool,
) -> bool:
    if strict is None and pass_through is None:
        pass_through = pass_through_default
    elif strict is not None and pass_through is None:
        if emit_deprecation_warning:
            msg = (
                "`strict` in `from_native` is deprecated, please use `pass_through` instead.\n\n"
                "Note: `strict` will remain available in `narwhals.stable.v1`.\n"
                "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
            )
            issue_deprecation_warning(msg, _version="1.13.0")
        pass_through = not strict
    elif strict is None and pass_through is not None:
        pass
    else:
        msg = "Cannot pass both `strict` and `pass_through`"
        raise ValueError(msg)
    return pass_through


def deprecate_native_namespace(
    *, warn_version: str = "", required: bool = False
) -> Callable[[Callable[P, R]], Callable[P, R]]:
    """Decorator to transition from `native_namespace` to `backend` argument.

    Arguments:
        warn_version: Emit a deprecation warning from this version.
        required: Raise when both `native_namespace`, `backend` are `None`.

    Returns:
        Wrapped function, with `native_namespace` **removed**.
    """

    def decorate(fn: Callable[P, R], /) -> Callable[P, R]:
        @wraps(fn)
        def wrapper(*args: P.args, **kwds: P.kwargs) -> R:
            backend = kwds.pop("backend", None)
            native_namespace = kwds.pop("native_namespace", None)
            if native_namespace is not None and backend is None:
                if warn_version:
                    msg = (
                        "`native_namespace` is deprecated, please use `backend` instead.\n\n"
                        "Note: `native_namespace` will remain available in `narwhals.stable.v1`.\n"
                        "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n"
                    )
                    issue_deprecation_warning(msg, _version=warn_version)
                backend = native_namespace
            elif native_namespace is not None and backend is not None:
                msg = "Can't pass both `native_namespace` and `backend`"
                raise ValueError(msg)
            elif native_namespace is None and backend is None and required:
                msg = f"`backend` must be specified in `{fn.__name__}`."
                raise ValueError(msg)
            kwds["backend"] = backend
            return fn(*args, **kwds)

        return wrapper

    return decorate


def _validate_rolling_arguments(
    window_size: int, min_samples: int | None
) -> tuple[int, int]:
    ensure_type(window_size, int, param_name="window_size")
    ensure_type(min_samples, int, type(None), param_name="min_samples")

    if window_size < 1:
        msg = "window_size must be greater or equal than 1"
        raise ValueError(msg)

    if min_samples is not None:
        if min_samples < 1:
            msg = "min_samples must be greater or equal than 1"
            raise ValueError(msg)

        if min_samples > window_size:
            msg = "`min_samples` must be less or equal than `window_size`"
            raise InvalidOperationError(msg)
    else:
        min_samples = window_size

    return window_size, min_samples


def generate_repr(header: str, native_repr: str) -> str:
    try:
        terminal_width = os.get_terminal_size().columns
    except OSError:
        terminal_width = int(os.getenv("COLUMNS", 80))  # noqa: PLW1508
    native_lines = native_repr.expandtabs().splitlines()
    max_native_width = max(len(line) for line in native_lines)

    if max_native_width + 2 <= terminal_width:
        length = max(max_native_width, len(header))
        output = f"┌{'─' * length}┐\n"
        header_extra = length - len(header)
        output += f"|{' ' * (header_extra // 2)}{header}{' ' * (header_extra // 2 + header_extra % 2)}|\n"
        output += f"|{'-' * (length)}|\n"
        start_extra = (length - max_native_width) // 2
        end_extra = (length - max_native_width) // 2 + (length - max_native_width) % 2
        for line in native_lines:
            output += f"|{' ' * (start_extra)}{line}{' ' * (end_extra + max_native_width - len(line))}|\n"
        output += f"└{'─' * length}┘"
        return output

    diff = 39 - len(header)
    return (
        f"┌{'─' * (39)}┐\n"
        f"|{' ' * (diff // 2)}{header}{' ' * (diff // 2 + diff % 2)}|\n"
        "| Use `.to_native` to see native output |\n└"
        f"{'─' * 39}┘"
    )


def check_columns_exist(
    subset: Sequence[str], /, *, available: Sequence[str]
) -> ColumnNotFoundError | None:
    if missing := set(subset).difference(available):
        return ColumnNotFoundError.from_missing_and_available_column_names(
            missing, available
        )
    return None


def check_column_names_are_unique(columns: Sequence[str]) -> None:
    len_unique_columns = len(set(columns))
    if len(columns) != len_unique_columns:
        from collections import Counter

        counter = Counter(columns)
        duplicates = {k: v for k, v in counter.items() if v > 1}
        msg = "".join(f"\n- '{k}' {v} times" for k, v in duplicates.items())
        msg = f"Expected unique column names, got:{msg}"
        raise DuplicateError(msg)


def _parse_time_unit_and_time_zone(
    time_unit: TimeUnit | Iterable[TimeUnit] | None,
    time_zone: str | timezone | Iterable[str | timezone | None] | None,
) -> tuple[Set[TimeUnit], Set[str | None]]:
    time_units: Set[TimeUnit] = (
        {"ms", "us", "ns", "s"}
        if time_unit is None
        else {time_unit}
        if isinstance(time_unit, str)
        else set(time_unit)
    )
    time_zones: Set[str | None] = (
        {None}
        if time_zone is None
        else {str(time_zone)}
        if isinstance(time_zone, (str, timezone))
        else {str(tz) if tz is not None else None for tz in time_zone}
    )
    return time_units, time_zones


def dtype_matches_time_unit_and_time_zone(
    dtype: DType, dtypes: DTypes, time_units: Set[TimeUnit], time_zones: Set[str | None]
) -> bool:
    return (
        isinstance(dtype, dtypes.Datetime)
        and (dtype.time_unit in time_units)
        and (
            dtype.time_zone in time_zones
            or ("*" in time_zones and dtype.time_zone is not None)
        )
    )


def get_column_names(frame: _StoresColumns, /) -> Sequence[str]:
    return frame.columns


def exclude_column_names(frame: _StoresColumns, names: Container[str]) -> Sequence[str]:
    return [col_name for col_name in frame.columns if col_name not in names]


def passthrough_column_names(names: Sequence[str], /) -> EvalNames[Any]:
    def fn(_frame: Any, /) -> Sequence[str]:
        return names

    return fn


def _hasattr_static(obj: Any, attr: str) -> bool:
    sentinel = object()
    return getattr_static(obj, attr, sentinel) is not sentinel


def is_compliant_dataframe(
    obj: CompliantDataFrame[
        CompliantSeriesT, CompliantExprT, NativeFrameT_co, ToNarwhalsT_co
    ]
    | Any,
) -> TypeIs[
    CompliantDataFrame[CompliantSeriesT, CompliantExprT, NativeFrameT_co, ToNarwhalsT_co]
]:
    return _hasattr_static(obj, "__narwhals_dataframe__")


def is_compliant_lazyframe(
    obj: CompliantLazyFrame[CompliantExprT, NativeFrameT_co, ToNarwhalsT_co] | Any,
) -> TypeIs[CompliantLazyFrame[CompliantExprT, NativeFrameT_co, ToNarwhalsT_co]]:
    return _hasattr_static(obj, "__narwhals_lazyframe__")


def is_compliant_series(
    obj: CompliantSeries[NativeSeriesT_co] | Any,
) -> TypeIs[CompliantSeries[NativeSeriesT_co]]:
    return _hasattr_static(obj, "__narwhals_series__")


def is_compliant_series_int(
    obj: CompliantSeries[NativeSeriesT_co] | Any,
) -> TypeIs[CompliantSeries[NativeSeriesT_co]]:
    return is_compliant_series(obj) and obj.dtype.is_integer()


def is_compliant_expr(
    obj: CompliantExpr[CompliantFrameT, CompliantSeriesOrNativeExprT_co] | Any,
) -> TypeIs[CompliantExpr[CompliantFrameT, CompliantSeriesOrNativeExprT_co]]:
    return hasattr(obj, "__narwhals_expr__")


def is_eager_allowed(obj: Implementation) -> TypeIs[EagerAllowedImplementation]:
    return obj in {
        Implementation.PANDAS,
        Implementation.MODIN,
        Implementation.CUDF,
        Implementation.POLARS,
        Implementation.PYARROW,
    }


def has_native_namespace(obj: Any) -> TypeIs[SupportsNativeNamespace]:
    return hasattr(obj, "__native_namespace__")


def _supports_dataframe_interchange(obj: Any) -> TypeIs[DataFrameLike]:
    return hasattr(obj, "__dataframe__")


def supports_arrow_c_stream(obj: Any) -> TypeIs[ArrowStreamExportable]:
    return _hasattr_static(obj, "__arrow_c_stream__")


def _remap_full_join_keys(
    left_on: Sequence[str], right_on: Sequence[str], suffix: str
) -> dict[str, str]:
    """Remap join keys to avoid collisions.

    If left keys collide with the right keys, append the suffix.
    If there's no collision, let the right keys be.

    Arguments:
        left_on: Left keys.
        right_on: Right keys.
        suffix: Suffix to append to right keys.

    Returns:
        A map of old to new right keys.
    """
    right_keys_suffixed = (
        f"{key}{suffix}" if key in left_on else key for key in right_on
    )
    return dict(zip(right_on, right_keys_suffixed))


def _into_arrow_table(data: IntoArrowTable, context: _FullContext, /) -> pa.Table:
    """Guards `ArrowDataFrame.from_arrow` w/ safer imports.

    Arguments:
        data: Object which implements `__arrow_c_stream__`.
        context: Initialized compliant object.

    Returns:
        A PyArrow Table.
    """
    if find_spec("pyarrow"):
        import pyarrow as pa  # ignore-banned-import

        from narwhals._arrow.namespace import ArrowNamespace

        version = context._version
        ns = ArrowNamespace(backend_version=parse_version(pa), version=version)
        return ns._dataframe.from_arrow(data, context=ns).native
    else:  # pragma: no cover
        msg = f"'pyarrow>=14.0.0' is required for `from_arrow` for object of type {qualified_type_name(data)!r}."
        raise ModuleNotFoundError(msg)


# TODO @dangotbanned: Extend with runtime behavior for `v1.*`
# See `narwhals.exceptions.NarwhalsUnstableWarning`
def unstable(fn: _Fn, /) -> _Fn:
    """Visual-only marker for unstable functionality.

    Arguments:
        fn: Function to decorate.

    Returns:
        Decorated function (unchanged).

    Examples:
        >>> from narwhals._utils import unstable
        >>> @unstable
        ... def a_work_in_progress_feature(*args):
        ...     return args
        >>>
        >>> a_work_in_progress_feature.__name__
        'a_work_in_progress_feature'
        >>> a_work_in_progress_feature(1, 2, 3)
        (1, 2, 3)
    """
    return fn


def _is_naive_format(format: str) -> bool:
    """Determines if a datetime format string is 'naive', i.e., does not include timezone information.

    A format is considered naive if it does not contain any of the following

    - '%s': Unix timestamp
    - '%z': UTC offset
    - 'Z' : UTC timezone designator

    Arguments:
        format: The datetime format string to check.

    Returns:
        bool: True if the format is naive (does not include timezone info), False otherwise.
    """
    return not any(x in format for x in ("%s", "%z", "Z"))


class not_implemented:  # noqa: N801
    """Mark some functionality as unsupported.

    Arguments:
        alias: optional name used instead of the data model hook [`__set_name__`].

    Returns:
        An exception-raising [descriptor].

    Notes:
        - Attribute/method name *doesn't* need to be declared twice
        - Allows different behavior when looked up on the class vs instance
        - Allows us to use `isinstance(...)` instead of monkeypatching an attribute to the function

    Examples:
        >>> from narwhals._utils import not_implemented
        >>> class Thing:
        ...     def totally_ready(self) -> str:
        ...         return "I'm ready!"
        ...
        ...     not_ready_yet = not_implemented()
        >>>
        >>> thing = Thing()
        >>> thing.totally_ready()
        "I'm ready!"
        >>> thing.not_ready_yet()
        Traceback (most recent call last):
            ...
        NotImplementedError: 'not_ready_yet' is not implemented for: 'Thing'.
        ...
        >>> isinstance(Thing.not_ready_yet, not_implemented)
        True

    [`__set_name__`]: https://docs.python.org/3/reference/datamodel.html#object.__set_name__
    [descriptor]: https://docs.python.org/3/howto/descriptor.html
    """

    def __init__(self, alias: str | None = None, /) -> None:
        # NOTE: Don't like this
        # Trying to workaround `mypy` requiring `@property` everywhere
        self._alias: str | None = alias

    def __repr__(self) -> str:
        return f"<{type(self).__name__}>: {self._name_owner}.{self._name}"

    def __set_name__(self, owner: type[_T], name: str) -> None:
        # https://docs.python.org/3/howto/descriptor.html#customized-names
        self._name_owner: str = owner.__name__
        self._name: str = self._alias or name

    def __get__(
        self, instance: _T | Literal["raise"] | None, owner: type[_T] | None = None, /
    ) -> Any:
        if instance is None:
            # NOTE: Branch for `cls._name`
            # We can check that to see if an instance of `type(self)` for
            # https://narwhals-dev.github.io/narwhals/api-completeness/expr/
            return self
        # NOTE: Prefer not exposing the actual class we're defining in
        # `_implementation` may not be available everywhere
        who = getattr(instance, "_implementation", self._name_owner)
        raise _not_implemented_error(self._name, who)

    def __call__(self, *args: Any, **kwds: Any) -> Any:
        # NOTE: Purely to duck-type as assignable to **any** instance method
        # Wouldn't be reachable through *regular* attribute access
        return self.__get__("raise")

    @classmethod
    def deprecated(cls, message: LiteralString, /) -> Self:
        """Alt constructor, wraps with `@deprecated`.

        Arguments:
            message: **Static-only** deprecation message, emitted in an IDE.

        Returns:
            An exception-raising [descriptor].

        [descriptor]: https://docs.python.org/3/howto/descriptor.html
        """
        obj = cls()
        return deprecated(message)(obj)


def _not_implemented_error(what: str, who: str, /) -> NotImplementedError:
    msg = (
        f"{what!r} is not implemented for: {who!r}.\n\n"
        "If you would like to see this functionality in `narwhals`, "
        "please open an issue at: https://github.com/narwhals-dev/narwhals/issues"
    )
    return NotImplementedError(msg)


class requires:  # noqa: N801
    """Method decorator for raising under certain constraints.

    Attributes:
        _min_version: Minimum backend version.
        _hint: Optional suggested alternative.

    Examples:
        >>> from narwhals._utils import requires, Implementation
        >>> class SomeBackend:
        ...     _implementation = Implementation.PYARROW
        ...     _backend_version = 20, 0, 0
        ...
        ...     @requires.backend_version((9000, 0, 0))
        ...     def really_complex_feature(self) -> str:
        ...         return "hello"
        >>> backend = SomeBackend()
        >>> backend.really_complex_feature()
        Traceback (most recent call last):
            ...
        NotImplementedError: `really_complex_feature` is only available in 'pyarrow>=9000.0.0', found version '20.0.0'.
    """

    _min_version: tuple[int, ...]
    _hint: str

    @classmethod
    def backend_version(cls, minimum: tuple[int, ...], /, hint: str = "") -> Self:
        """Method decorator for raising below a minimum `_backend_version`.

        Arguments:
            minimum: Minimum backend version.
            hint: Optional suggested alternative.

        Returns:
            An exception-raising decorator.
        """
        obj = cls.__new__(cls)
        obj._min_version = minimum
        obj._hint = hint
        return obj

    @staticmethod
    def _unparse_version(backend_version: tuple[int, ...], /) -> str:
        return ".".join(f"{d}" for d in backend_version)

    def _ensure_version(self, instance: _FullContext, /) -> None:
        if instance._backend_version >= self._min_version:
            return
        method = self._wrapped_name
        backend = instance._implementation
        minimum = self._unparse_version(self._min_version)
        found = self._unparse_version(instance._backend_version)
        msg = f"`{method}` is only available in '{backend}>={minimum}', found version {found!r}."
        if self._hint:
            msg = f"{msg}\n{self._hint}"
        raise NotImplementedError(msg)

    def __call__(self, fn: _Method[_ContextT, P, R], /) -> _Method[_ContextT, P, R]:
        self._wrapped_name = fn.__name__

        @wraps(fn)
        def wrapper(instance: _ContextT, *args: P.args, **kwds: P.kwargs) -> R:
            self._ensure_version(instance)
            return fn(instance, *args, **kwds)

        # NOTE: Only getting a complaint from `mypy`
        return wrapper  # type: ignore[return-value]


def convert_str_slice_to_int_slice(
    str_slice: _SliceName, columns: Sequence[str]
) -> tuple[int | None, int | None, Any]:
    start = columns.index(str_slice.start) if str_slice.start is not None else None
    stop = columns.index(str_slice.stop) + 1 if str_slice.stop is not None else None
    step = str_slice.step
    return (start, stop, step)


def inherit_doc(
    tp_parent: Callable[P, R1], /
) -> Callable[[_Constructor[_T, P, R2]], _Constructor[_T, P, R2]]:
    """Steal the class-level docstring from parent and attach to child `__init__`.

    Returns:
        Decorated constructor.

    Notes:
        - Passes static typing (mostly)
        - Passes at runtime
    """

    def decorate(init_child: _Constructor[_T, P, R2], /) -> _Constructor[_T, P, R2]:
        if init_child.__name__ == "__init__" and issubclass(type(tp_parent), type):
            init_child.__doc__ = getdoc(tp_parent)
            return init_child
        else:  # pragma: no cover
            msg = (
                f"`@{inherit_doc.__name__}` is only allowed to decorate an `__init__` with a class-level doc.\n"
                f"Method: {init_child.__qualname__!r}\n"
                f"Parent: {tp_parent!r}"
            )
            raise TypeError(msg)

    return decorate


def qualified_type_name(obj: object | type[Any], /) -> str:
    tp = obj if isinstance(obj, type) else type(obj)
    module = tp.__module__ if tp.__module__ != "builtins" else ""
    return f"{module}.{tp.__name__}".lstrip(".")


def ensure_type(obj: Any, /, *valid_types: type[Any], param_name: str = "") -> None:
    """Validate that an object is an instance of one or more specified types.

    Parameters:
        obj: The object to validate.
        *valid_types: One or more valid types that `obj` is expected to match.
        param_name: The name of the parameter being validated.
            Used to improve error message clarity.

    Raises:
        TypeError: If `obj` is not an instance of any of the provided `valid_types`.

    Examples:
        >>> from narwhals._utils import ensure_type
        >>> ensure_type(42, int, float)
        >>> ensure_type("hello", str)

        >>> ensure_type("hello", int, param_name="test")
        Traceback (most recent call last):
            ...
        TypeError: Expected 'int', got: 'str'
            test='hello'
                 ^^^^^^^
        >>> import polars as pl
        >>> import pandas as pd
        >>> df = pl.DataFrame([[1], [2], [3], [4], [5]], schema=[*"abcde"])
        >>> ensure_type(df, pd.DataFrame, param_name="df")
        Traceback (most recent call last):
            ...
        TypeError: Expected 'pandas.core.frame.DataFrame', got: 'polars.dataframe.frame.DataFrame'
            df=polars.dataframe.frame.DataFrame(...)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    """
    if not isinstance(obj, valid_types):  # pragma: no cover
        tp_names = " | ".join(qualified_type_name(tp) for tp in valid_types)
        msg = f"Expected {tp_names!r}, got: {qualified_type_name(obj)!r}"
        if param_name:
            left_pad = " " * 4
            val = repr(obj)
            if len(val) > 40:  # truncate long reprs
                val = f"{qualified_type_name(obj)}(...)"
            assign = f"{left_pad}{param_name}="
            underline = (" " * len(assign)) + ("^" * len(val))
            msg = f"{msg}\n{assign}{val}\n{underline}"
        raise TypeError(msg)


class _DeferredIterable(Generic[_T]):
    """Store a callable producing an iterable to defer collection until we need it."""

    def __init__(self, into_iter: Callable[[], Iterable[_T]], /) -> None:
        self._into_iter: Callable[[], Iterable[_T]] = into_iter

    def __iter__(self) -> Iterator[_T]:
        yield from self._into_iter()

    def to_tuple(self) -> tuple[_T, ...]:
        # Collect and return as a `tuple`.
        it = self._into_iter()
        return it if isinstance(it, tuple) else tuple(it)
