from __future__ import annotations

from functools import wraps
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Iterable,
    Literal,
    Mapping,
    Sequence,
    cast,
    overload,
)
from warnings import warn

import narwhals as nw
from narwhals import dependencies, exceptions, functions as nw_f, selectors
from narwhals._typing_compat import TypeVar
from narwhals._utils import (
    Implementation,
    Version,
    deprecate_native_namespace,
    find_stacklevel,
    generate_temporary_column_name,
    inherit_doc,
    is_ordered_categorical,
    maybe_align_index,
    maybe_convert_dtypes,
    maybe_get_index,
    maybe_reset_index,
    maybe_set_index,
    validate_strict_and_pass_though,
)
from narwhals.dataframe import DataFrame as NwDataFrame, LazyFrame as NwLazyFrame
from narwhals.dependencies import get_polars
from narwhals.exceptions import InvalidIntoExprError
from narwhals.expr import Expr as NwExpr
from narwhals.functions import _new_series_impl, concat, get_level, show_versions
from narwhals.schema import Schema as NwSchema
from narwhals.series import Series as NwSeries
from narwhals.stable.v1 import dtypes
from narwhals.stable.v1.dtypes import (
    Array,
    Binary,
    Boolean,
    Categorical,
    Date,
    Datetime,
    Decimal,
    Duration,
    Enum,
    Field,
    Float32,
    Float64,
    Int8,
    Int16,
    Int32,
    Int64,
    Int128,
    List,
    Object,
    String,
    Struct,
    Time,
    UInt8,
    UInt16,
    UInt32,
    UInt64,
    UInt128,
    Unknown,
)
from narwhals.translate import _from_native_impl, get_native_namespace, to_py_scalar
from narwhals.typing import IntoDataFrameT, IntoFrameT

if TYPE_CHECKING:
    from types import ModuleType

    from typing_extensions import ParamSpec, Self

    from narwhals._translate import IntoArrowTable
    from narwhals.dataframe import MultiColSelector, MultiIndexSelector
    from narwhals.dtypes import DType
    from narwhals.typing import (
        IntoDType,
        IntoExpr,
        IntoFrame,
        IntoLazyFrameT,
        IntoSeries,
        NonNestedLiteral,
        SingleColSelector,
        SingleIndexSelector,
        _1DArray,
        _2DArray,
    )

    DataFrameT = TypeVar("DataFrameT", bound="DataFrame[Any]")
    LazyFrameT = TypeVar("LazyFrameT", bound="LazyFrame[Any]")
    SeriesT = TypeVar("SeriesT", bound="Series[Any]")
    T = TypeVar("T", default=Any)
    P = ParamSpec("P")
    R = TypeVar("R")

IntoSeriesT = TypeVar("IntoSeriesT", bound="IntoSeries", default=Any)


class DataFrame(NwDataFrame[IntoDataFrameT]):
    @inherit_doc(NwDataFrame)
    def __init__(self, df: Any, *, level: Literal["full", "lazy", "interchange"]) -> None:
        assert df._version is Version.V1  # noqa: S101
        super().__init__(df, level=level)

    # We need to override any method which don't return Self so that type
    # annotations are correct.

    @property
    def _series(self) -> type[Series[Any]]:
        return cast("type[Series[Any]]", Series)

    @property
    def _lazyframe(self) -> type[LazyFrame[Any]]:
        return cast("type[LazyFrame[Any]]", LazyFrame)

    @overload
    def __getitem__(self, item: tuple[SingleIndexSelector, SingleColSelector]) -> Any: ...

    @overload
    def __getitem__(  # type: ignore[overload-overlap]
        self, item: str | tuple[MultiIndexSelector, SingleColSelector]
    ) -> Series[Any]: ...

    @overload
    def __getitem__(
        self,
        item: (
            SingleIndexSelector
            | MultiIndexSelector
            | MultiColSelector
            | tuple[SingleIndexSelector, MultiColSelector]
            | tuple[MultiIndexSelector, MultiColSelector]
        ),
    ) -> Self: ...
    def __getitem__(
        self,
        item: (
            SingleIndexSelector
            | SingleColSelector
            | MultiColSelector
            | MultiIndexSelector
            | tuple[SingleIndexSelector, SingleColSelector]
            | tuple[SingleIndexSelector, MultiColSelector]
            | tuple[MultiIndexSelector, SingleColSelector]
            | tuple[MultiIndexSelector, MultiColSelector]
        ),
    ) -> Series[Any] | Self | Any:
        return super().__getitem__(item)

    def lazy(
        self, backend: ModuleType | Implementation | str | None = None
    ) -> LazyFrame[Any]:
        return _stableify(super().lazy(backend=backend))

    @overload  # type: ignore[override]
    def to_dict(self, *, as_series: Literal[True] = ...) -> dict[str, Series[Any]]: ...
    @overload
    def to_dict(self, *, as_series: Literal[False]) -> dict[str, list[Any]]: ...
    @overload
    def to_dict(
        self, *, as_series: bool
    ) -> dict[str, Series[Any]] | dict[str, list[Any]]: ...
    def to_dict(
        self, *, as_series: bool = True
    ) -> dict[str, Series[Any]] | dict[str, list[Any]]:
        # Type checkers complain that `nw.Series` is not assignable to `nw.v1.stable.Series`.
        # However the return type actually is `nw.v1.stable.Series`, check `tests/v1_test.py::test_to_dict_as_series`.
        return super().to_dict(as_series=as_series)  # type: ignore[return-value]

    def is_duplicated(self) -> Series[Any]:
        return _stableify(super().is_duplicated())

    def is_unique(self) -> Series[Any]:
        return _stableify(super().is_unique())

    def _l1_norm(self) -> Self:
        """Private, just used to test the stable API.

        Returns:
            A new DataFrame.
        """
        return self.select(all()._l1_norm())


class LazyFrame(NwLazyFrame[IntoFrameT]):
    @inherit_doc(NwLazyFrame)
    def __init__(self, df: Any, *, level: Literal["full", "lazy", "interchange"]) -> None:
        assert df._version is Version.V1  # noqa: S101
        super().__init__(df, level=level)

    @property
    def _dataframe(self) -> type[DataFrame[Any]]:
        return DataFrame

    def _extract_compliant(self, arg: Any) -> Any:
        # After v1, we raise when passing order-dependent or length-changing
        # expressions to LazyFrame
        from narwhals.dataframe import BaseFrame
        from narwhals.expr import Expr
        from narwhals.series import Series

        if isinstance(arg, BaseFrame):
            return arg._compliant_frame
        if isinstance(arg, Series):  # pragma: no cover
            msg = "Mixing Series with LazyFrame is not supported."
            raise TypeError(msg)
        if isinstance(arg, Expr):
            # After stable.v1, we raise for order-dependent exprs or filtrations
            return arg._to_compliant_expr(self.__narwhals_namespace__())
        if isinstance(arg, str):
            plx = self.__narwhals_namespace__()
            return plx.col(arg)
        if get_polars() is not None and "polars" in str(type(arg)):  # pragma: no cover
            msg = (
                f"Expected Narwhals object, got: {type(arg)}.\n\n"
                "Perhaps you:\n"
                "- Forgot a `nw.from_native` somewhere?\n"
                "- Used `pl.col` instead of `nw.col`?"
            )
            raise TypeError(msg)
        raise InvalidIntoExprError.from_invalid_type(type(arg))

    def collect(
        self, backend: ModuleType | Implementation | str | None = None, **kwargs: Any
    ) -> DataFrame[Any]:
        return _stableify(super().collect(backend=backend, **kwargs))

    def _l1_norm(self) -> Self:
        """Private, just used to test the stable API.

        Returns:
            A new lazyframe.
        """
        return self.select(all()._l1_norm())

    def tail(self, n: int = 5) -> Self:
        r"""Get the last `n` rows.

        Arguments:
            n: Number of rows to return.

        Returns:
            A subset of the LazyFrame of shape (n, n_columns).
        """
        return super().tail(n)

    def gather_every(self, n: int, offset: int = 0) -> Self:
        r"""Take every nth row in the DataFrame and return as a new DataFrame.

        Arguments:
            n: Gather every *n*-th row.
            offset: Starting index.

        Returns:
            The LazyFrame containing only the selected rows.
        """
        return self._with_compliant(
            self._compliant_frame.gather_every(n=n, offset=offset)
        )


class Series(NwSeries[IntoSeriesT]):
    @inherit_doc(NwSeries)
    def __init__(
        self, series: Any, *, level: Literal["full", "lazy", "interchange"]
    ) -> None:
        assert series._version is Version.V1  # noqa: S101
        super().__init__(series, level=level)

    # We need to override any method which don't return Self so that type
    # annotations are correct.

    @property
    def _dataframe(self) -> type[DataFrame[Any]]:
        return DataFrame

    def to_frame(self) -> DataFrame[Any]:
        return _stableify(super().to_frame())

    def value_counts(
        self,
        *,
        sort: bool = False,
        parallel: bool = False,
        name: str | None = None,
        normalize: bool = False,
    ) -> DataFrame[Any]:
        return _stableify(
            super().value_counts(
                sort=sort, parallel=parallel, name=name, normalize=normalize
            )
        )

    def hist(
        self,
        bins: list[float | int] | None = None,
        *,
        bin_count: int | None = None,
        include_breakpoint: bool = True,
    ) -> DataFrame[Any]:
        from narwhals._utils import find_stacklevel
        from narwhals.exceptions import NarwhalsUnstableWarning

        msg = (
            "`Series.hist` is being called from the stable API although considered "
            "an unstable feature."
        )
        warn(message=msg, category=NarwhalsUnstableWarning, stacklevel=find_stacklevel())
        return _stableify(
            super().hist(
                bins=bins, bin_count=bin_count, include_breakpoint=include_breakpoint
            )
        )


class Expr(NwExpr):
    def _l1_norm(self) -> Self:
        return super()._taxicab_norm()

    def head(self, n: int = 10) -> Self:
        r"""Get the first `n` rows.

        Arguments:
            n: Number of rows to return.

        Returns:
            A new expression.
        """
        return self._with_orderable_filtration(
            lambda plx: self._to_compliant_expr(plx).head(n)
        )

    def tail(self, n: int = 10) -> Self:
        r"""Get the last `n` rows.

        Arguments:
            n: Number of rows to return.

        Returns:
            A new expression.
        """
        return self._with_orderable_filtration(
            lambda plx: self._to_compliant_expr(plx).tail(n)
        )

    def gather_every(self, n: int, offset: int = 0) -> Self:
        r"""Take every nth value in the Series and return as new Series.

        Arguments:
            n: Gather every *n*-th row.
            offset: Starting index.

        Returns:
            A new expression.
        """
        return self._with_orderable_filtration(
            lambda plx: self._to_compliant_expr(plx).gather_every(n=n, offset=offset)
        )

    def unique(self, *, maintain_order: bool | None = None) -> Self:
        """Return unique values of this expression.

        Arguments:
            maintain_order: Keep the same order as the original expression.
                This is deprecated and will be removed in a future version,
                but will still be kept around in `narwhals.stable.v1`.

        Returns:
            A new expression.
        """
        if maintain_order is not None:
            msg = (
                "`maintain_order` has no effect and is only kept around for backwards-compatibility. "
                "You can safely remove this argument."
            )
            warn(message=msg, category=UserWarning, stacklevel=find_stacklevel())
        return self._with_filtration(lambda plx: self._to_compliant_expr(plx).unique())

    def sort(self, *, descending: bool = False, nulls_last: bool = False) -> Self:
        """Sort this column. Place null values first.

        Arguments:
            descending: Sort in descending order.
            nulls_last: Place null values last instead of first.

        Returns:
            A new expression.
        """
        return self._with_unorderable_window(
            lambda plx: self._to_compliant_expr(plx).sort(
                descending=descending, nulls_last=nulls_last
            )
        )

    def arg_true(self) -> Self:
        """Find elements where boolean expression is True.

        Returns:
            A new expression.
        """
        return self._with_orderable_filtration(
            lambda plx: self._to_compliant_expr(plx).arg_true()
        )

    def sample(
        self,
        n: int | None = None,
        *,
        fraction: float | None = None,
        with_replacement: bool = False,
        seed: int | None = None,
    ) -> Self:
        """Sample randomly from this expression.

        Arguments:
            n: Number of items to return. Cannot be used with fraction.
            fraction: Fraction of items to return. Cannot be used with n.
            with_replacement: Allow values to be sampled more than once.
            seed: Seed for the random number generator. If set to None (default), a random
                seed is generated for each sample operation.

        Returns:
            A new expression.
        """
        return self._with_filtration(
            lambda plx: self._to_compliant_expr(plx).sample(
                n, fraction=fraction, with_replacement=with_replacement, seed=seed
            )
        )


class Schema(NwSchema):
    _version = Version.V1

    @inherit_doc(NwSchema)
    def __init__(
        self, schema: Mapping[str, DType] | Iterable[tuple[str, DType]] | None = None
    ) -> None:
        super().__init__(schema)


@overload
def _stableify(obj: NwDataFrame[IntoFrameT]) -> DataFrame[IntoFrameT]: ...
@overload
def _stableify(obj: NwLazyFrame[IntoFrameT]) -> LazyFrame[IntoFrameT]: ...
@overload
def _stableify(obj: NwSeries[IntoSeriesT]) -> Series[IntoSeriesT]: ...
@overload
def _stableify(obj: NwExpr) -> Expr: ...


def _stableify(
    obj: NwDataFrame[IntoFrameT]
    | NwLazyFrame[IntoFrameT]
    | NwSeries[IntoSeriesT]
    | NwExpr,
) -> DataFrame[IntoFrameT] | LazyFrame[IntoFrameT] | Series[IntoSeriesT] | Expr:
    if isinstance(obj, NwDataFrame):
        return DataFrame(obj._compliant_frame._with_version(Version.V1), level=obj._level)
    if isinstance(obj, NwLazyFrame):
        return LazyFrame(obj._compliant_frame._with_version(Version.V1), level=obj._level)
    if isinstance(obj, NwSeries):
        return Series(obj._compliant_series._with_version(Version.V1), level=obj._level)
    if isinstance(obj, NwExpr):
        return Expr(obj._to_compliant_expr, obj._metadata)
    msg = f"Expected DataFrame, LazyFrame, Series, or Expr, got: {type(obj)}"  # pragma: no cover
    raise AssertionError(msg)


@overload
def from_native(native_object: SeriesT, **kwds: Any) -> SeriesT: ...


@overload
def from_native(native_object: DataFrameT, **kwds: Any) -> DataFrameT: ...


@overload
def from_native(native_object: LazyFrameT, **kwds: Any) -> LazyFrameT: ...


@overload
def from_native(
    native_object: DataFrameT | LazyFrameT, **kwds: Any
) -> DataFrameT | LazyFrameT: ...


@overload
def from_native(
    native_object: IntoDataFrameT | IntoSeriesT,
    *,
    strict: Literal[False],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[True],
    series_only: Literal[False] = ...,
    allow_series: Literal[True],
) -> DataFrame[IntoDataFrameT] | Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoDataFrameT | IntoSeriesT,
    *,
    strict: Literal[False],
    eager_only: Literal[True],
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: Literal[True],
) -> DataFrame[IntoDataFrameT] | Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoDataFrameT,
    *,
    strict: Literal[False],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[True],
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: T,
    *,
    strict: Literal[False],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[True],
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> T: ...


@overload
def from_native(
    native_object: IntoDataFrameT,
    *,
    strict: Literal[False],
    eager_only: Literal[True],
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: T,
    *,
    strict: Literal[False],
    eager_only: Literal[True],
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> T: ...


@overload
def from_native(
    native_object: IntoFrameT | IntoSeriesT,
    *,
    strict: Literal[False],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: Literal[True],
) -> DataFrame[IntoFrameT] | LazyFrame[IntoFrameT] | Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoSeriesT,
    *,
    strict: Literal[False],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[True],
    allow_series: None = ...,
) -> Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoFrameT,
    *,
    strict: Literal[False],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoFrameT] | LazyFrame[IntoFrameT]: ...


@overload
def from_native(
    native_object: T,
    *,
    strict: Literal[False],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> T: ...


@overload
def from_native(
    native_object: IntoDataFrameT,
    *,
    strict: Literal[True] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[True],
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: IntoDataFrameT,
    *,
    strict: Literal[True] = ...,
    eager_only: Literal[True],
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: IntoFrame | IntoSeries,
    *,
    strict: Literal[True] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: Literal[True],
) -> DataFrame[Any] | LazyFrame[Any] | Series[Any]: ...


@overload
def from_native(
    native_object: IntoSeriesT,
    *,
    strict: Literal[True] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[True],
    allow_series: None = ...,
) -> Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoLazyFrameT,
    *,
    strict: Literal[True] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> LazyFrame[IntoLazyFrameT]: ...


# NOTE: `pl.LazyFrame` originally matched here
@overload
def from_native(
    native_object: IntoFrameT,
    *,
    strict: Literal[True] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoFrameT] | LazyFrame[IntoFrameT]: ...


@overload
def from_native(
    native_object: IntoDataFrameT | IntoSeries,
    *,
    pass_through: Literal[True],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[True],
    series_only: Literal[False] = ...,
    allow_series: Literal[True],
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: IntoDataFrameT | IntoSeriesT,
    *,
    pass_through: Literal[True],
    eager_only: Literal[True],
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: Literal[True],
) -> DataFrame[IntoDataFrameT] | Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoDataFrameT,
    *,
    pass_through: Literal[True],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[True],
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: T,
    *,
    pass_through: Literal[True],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[True],
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> T: ...


@overload
def from_native(
    native_object: IntoDataFrameT,
    *,
    pass_through: Literal[True],
    eager_only: Literal[True],
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: T,
    *,
    pass_through: Literal[True],
    eager_only: Literal[True],
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> T: ...


@overload
def from_native(
    native_object: IntoFrameT | IntoSeriesT,
    *,
    pass_through: Literal[True],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: Literal[True],
) -> DataFrame[IntoFrameT] | LazyFrame[IntoFrameT] | Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoSeriesT,
    *,
    pass_through: Literal[True],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[True],
    allow_series: None = ...,
) -> Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoFrameT,
    *,
    pass_through: Literal[True],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoFrameT] | LazyFrame[IntoFrameT]: ...


@overload
def from_native(
    native_object: T,
    *,
    pass_through: Literal[True],
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> T: ...


@overload
def from_native(
    native_object: IntoDataFrameT,
    *,
    pass_through: Literal[False] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[True],
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: IntoDataFrameT,
    *,
    pass_through: Literal[False] = ...,
    eager_only: Literal[True],
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...


@overload
def from_native(
    native_object: IntoFrame | IntoSeries,
    *,
    pass_through: Literal[False] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: Literal[True],
) -> DataFrame[Any] | LazyFrame[Any] | Series[Any]: ...


@overload
def from_native(
    native_object: IntoSeriesT,
    *,
    pass_through: Literal[False] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[True],
    allow_series: None = ...,
) -> Series[IntoSeriesT]: ...


@overload
def from_native(
    native_object: IntoFrameT,
    *,
    pass_through: Literal[False] = ...,
    eager_only: Literal[False] = ...,
    eager_or_interchange_only: Literal[False] = ...,
    series_only: Literal[False] = ...,
    allow_series: None = ...,
) -> DataFrame[IntoFrameT] | LazyFrame[IntoFrameT]: ...


# All params passed in as variables
@overload
def from_native(
    native_object: Any,
    *,
    pass_through: bool,
    eager_only: bool,
    eager_or_interchange_only: bool = False,
    series_only: bool,
    allow_series: bool | None,
) -> Any: ...


def from_native(  # noqa: D417
    native_object: IntoFrameT | IntoFrame | IntoSeriesT | IntoSeries | T,
    *,
    strict: bool | None = None,
    pass_through: bool | None = None,
    eager_only: bool = False,
    eager_or_interchange_only: bool = False,
    series_only: bool = False,
    allow_series: bool | None = None,
    **kwds: Any,
) -> LazyFrame[IntoFrameT] | DataFrame[IntoFrameT] | Series[IntoSeriesT] | T:
    """Convert `native_object` to Narwhals Dataframe, Lazyframe, or Series.

    Arguments:
        native_object: Raw object from user.
            Depending on the other arguments, input object can be

            - a Dataframe / Lazyframe / Series supported by Narwhals (pandas, Polars, PyArrow, ...)
            - an object which implements `__narwhals_dataframe__`, `__narwhals_lazyframe__`,
              or `__narwhals_series__`
        strict: Determine what happens if the object can't be converted to Narwhals

            - `True` or `None` (default): raise an error
            - `False`: pass object through as-is

            *Deprecated* (v1.13.0)

            Please use `pass_through` instead. Note that `strict` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).
        pass_through: Determine what happens if the object can't be converted to Narwhals

            - `False` or `None` (default): raise an error
            - `True`: pass object through as-is
        eager_only: Whether to only allow eager objects

            - `False` (default): don't require `native_object` to be eager
            - `True`: only convert to Narwhals if `native_object` is eager
        eager_or_interchange_only: Whether to only allow eager objects or objects which
            have interchange-level support in Narwhals

            - `False` (default): don't require `native_object` to either be eager or to
              have interchange-level support in Narwhals
            - `True`: only convert to Narwhals if `native_object` is eager or has
              interchange-level support in Narwhals

            See [interchange-only support](../extending.md/#interchange-only-support)
            for more details.
        series_only: Whether to only allow Series

            - `False` (default): don't require `native_object` to be a Series
            - `True`: only convert to Narwhals if `native_object` is a Series
        allow_series: Whether to allow Series (default is only Dataframe / Lazyframe)

            - `False` or `None` (default): don't convert to Narwhals if `native_object` is a Series
            - `True`: allow `native_object` to be a Series

    Returns:
        DataFrame, LazyFrame, Series, or original object, depending
            on which combination of parameters was passed.
    """
    # Early returns
    if isinstance(native_object, (DataFrame, LazyFrame)) and not series_only:
        return native_object
    if isinstance(native_object, Series) and (series_only or allow_series):
        return native_object

    pass_through = validate_strict_and_pass_though(
        strict, pass_through, pass_through_default=False, emit_deprecation_warning=False
    )
    if kwds:
        msg = f"from_native() got an unexpected keyword argument {next(iter(kwds))!r}"
        raise TypeError(msg)

    return _from_native_impl(  # type: ignore[no-any-return]
        native_object,
        pass_through=pass_through,
        eager_only=eager_only,
        eager_or_interchange_only=eager_or_interchange_only,
        series_only=series_only,
        allow_series=allow_series,
        version=Version.V1,
    )


@overload
def to_native(
    narwhals_object: DataFrame[IntoDataFrameT], *, strict: Literal[True] = ...
) -> IntoDataFrameT: ...
@overload
def to_native(
    narwhals_object: LazyFrame[IntoFrameT], *, strict: Literal[True] = ...
) -> IntoFrameT: ...
@overload
def to_native(
    narwhals_object: Series[IntoSeriesT], *, strict: Literal[True] = ...
) -> IntoSeriesT: ...
@overload
def to_native(narwhals_object: Any, *, strict: bool) -> Any: ...
@overload
def to_native(
    narwhals_object: DataFrame[IntoDataFrameT], *, pass_through: Literal[False] = ...
) -> IntoDataFrameT: ...
@overload
def to_native(
    narwhals_object: LazyFrame[IntoFrameT], *, pass_through: Literal[False] = ...
) -> IntoFrameT: ...
@overload
def to_native(
    narwhals_object: Series[IntoSeriesT], *, pass_through: Literal[False] = ...
) -> IntoSeriesT: ...
@overload
def to_native(narwhals_object: Any, *, pass_through: bool) -> Any: ...


def to_native(
    narwhals_object: DataFrame[IntoDataFrameT]
    | LazyFrame[IntoFrameT]
    | Series[IntoSeriesT],
    *,
    strict: bool | None = None,
    pass_through: bool | None = None,
) -> IntoFrameT | IntoSeriesT | Any:
    """Convert Narwhals object to native one.

    Arguments:
        narwhals_object: Narwhals object.
        strict: Determine what happens if `narwhals_object` isn't a Narwhals class

            - `True` (default): raise an error
            - `False`: pass object through as-is

            *Deprecated* (v1.13.0)

            Please use `pass_through` instead. Note that `strict` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).
        pass_through: Determine what happens if `narwhals_object` isn't a Narwhals class

            - `False` (default): raise an error
            - `True`: pass object through as-is

    Returns:
        Object of class that user started with.
    """
    from narwhals._utils import validate_strict_and_pass_though
    from narwhals.dataframe import BaseFrame
    from narwhals.series import Series

    pass_through = validate_strict_and_pass_though(
        strict, pass_through, pass_through_default=False, emit_deprecation_warning=False
    )

    if isinstance(narwhals_object, BaseFrame):
        return narwhals_object._compliant_frame._native_frame
    if isinstance(narwhals_object, Series):
        return narwhals_object._compliant_series.native

    if not pass_through:
        msg = f"Expected Narwhals object, got {type(narwhals_object)}."
        raise TypeError(msg)
    return narwhals_object


def narwhalify(
    func: Callable[..., Any] | None = None,
    *,
    strict: bool | None = None,
    pass_through: bool | None = None,
    eager_only: bool = False,
    eager_or_interchange_only: bool = False,
    series_only: bool = False,
    allow_series: bool | None = True,
) -> Callable[..., Any]:
    """Decorate function so it becomes dataframe-agnostic.

    This will try to convert any dataframe/series-like object into the Narwhals
    respective DataFrame/Series, while leaving the other parameters as they are.
    Similarly, if the output of the function is a Narwhals DataFrame or Series, it will be
    converted back to the original dataframe/series type, while if the output is another
    type it will be left as is.
    By setting `pass_through=False`, then every input and every output will be required to be a
    dataframe/series-like object.

    Arguments:
        func: Function to wrap in a `from_native`-`to_native` block.
        strict: Determine what happens if the object can't be converted to Narwhals

            *Deprecated* (v1.13.0)

            Please use `pass_through` instead. Note that `strict` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).

            - `True` or `None` (default): raise an error
            - `False`: pass object through as-is
        pass_through: Determine what happens if the object can't be converted to Narwhals

            - `False` or `None` (default): raise an error
            - `True`: pass object through as-is
        eager_only: Whether to only allow eager objects

            - `False` (default): don't require `native_object` to be eager
            - `True`: only convert to Narwhals if `native_object` is eager
        eager_or_interchange_only: Whether to only allow eager objects or objects which
            have interchange-level support in Narwhals

            - `False` (default): don't require `native_object` to either be eager or to
              have interchange-level support in Narwhals
            - `True`: only convert to Narwhals if `native_object` is eager or has
              interchange-level support in Narwhals

            See [interchange-only support](../extending.md/#interchange-only-support)
            for more details.
        series_only: Whether to only allow Series

            - `False` (default): don't require `native_object` to be a Series
            - `True`: only convert to Narwhals if `native_object` is a Series
        allow_series: Whether to allow Series (default is only Dataframe / Lazyframe)

            - `False` or `None`: don't convert to Narwhals if `native_object` is a Series
            - `True` (default): allow `native_object` to be a Series

    Returns:
        Decorated function.
    """
    pass_through = validate_strict_and_pass_though(
        strict, pass_through, pass_through_default=True, emit_deprecation_warning=False
    )

    def decorator(func: Callable[..., Any]) -> Callable[..., Any]:
        @wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            args = [
                from_native(
                    arg,
                    pass_through=pass_through,
                    eager_only=eager_only,
                    eager_or_interchange_only=eager_or_interchange_only,
                    series_only=series_only,
                    allow_series=allow_series,
                )
                for arg in args
            ]  # type: ignore[assignment]

            kwargs = {
                name: from_native(
                    value,
                    pass_through=pass_through,
                    eager_only=eager_only,
                    eager_or_interchange_only=eager_or_interchange_only,
                    series_only=series_only,
                    allow_series=allow_series,
                )
                for name, value in kwargs.items()
            }

            backends = {
                b()
                for v in (*args, *kwargs.values())
                if (b := getattr(v, "__native_namespace__", None))
            }

            if backends.__len__() > 1:
                msg = "Found multiple backends. Make sure that all dataframe/series inputs come from the same backend."
                raise ValueError(msg)

            result = func(*args, **kwargs)

            return to_native(result, pass_through=pass_through)

        return wrapper

    if func is None:
        return decorator
    else:
        # If func is not None, it means the decorator is used without arguments
        return decorator(func)


def all() -> Expr:
    """Instantiate an expression representing all columns.

    Returns:
        A new expression.
    """
    return _stableify(nw.all())


def col(*names: str | Iterable[str]) -> Expr:
    """Creates an expression that references one or more columns by their name(s).

    Arguments:
        names: Name(s) of the columns to use.

    Returns:
        A new expression.
    """
    return _stableify(nw.col(*names))


def exclude(*names: str | Iterable[str]) -> Expr:
    """Creates an expression that excludes columns by their name(s).

    Arguments:
        names: Name(s) of the columns to exclude.

    Returns:
        A new expression.
    """
    return _stableify(nw.exclude(*names))


def nth(*indices: int | Sequence[int]) -> Expr:
    """Creates an expression that references one or more columns by their index(es).

    Notes:
        `nth` is not supported for Polars version<1.0.0. Please use
        [`narwhals.col`][] instead.

    Arguments:
        indices: One or more indices representing the columns to retrieve.

    Returns:
        A new expression.
    """
    return _stableify(nw.nth(*indices))


def len() -> Expr:
    """Return the number of rows.

    Returns:
        A new expression.
    """
    return _stableify(nw.len())


def lit(value: NonNestedLiteral, dtype: IntoDType | None = None) -> Expr:
    """Return an expression representing a literal value.

    Arguments:
        value: The value to use as literal.
        dtype: The data type of the literal value. If not provided, the data type will
            be inferred by the native library.

    Returns:
        A new expression.
    """
    return _stableify(nw.lit(value, dtype))


def min(*columns: str) -> Expr:
    """Return the minimum value.

    Note:
       Syntactic sugar for ``nw.col(columns).min()``.

    Arguments:
        columns: Name(s) of the columns to use in the aggregation function.

    Returns:
        A new expression.
    """
    return _stableify(nw.min(*columns))


def max(*columns: str) -> Expr:
    """Return the maximum value.

    Note:
       Syntactic sugar for ``nw.col(columns).max()``.

    Arguments:
        columns: Name(s) of the columns to use in the aggregation function.

    Returns:
        A new expression.
    """
    return _stableify(nw.max(*columns))


def mean(*columns: str) -> Expr:
    """Get the mean value.

    Note:
        Syntactic sugar for ``nw.col(columns).mean()``

    Arguments:
        columns: Name(s) of the columns to use in the aggregation function

    Returns:
        A new expression.
    """
    return _stableify(nw.mean(*columns))


def median(*columns: str) -> Expr:
    """Get the median value.

    Notes:
        - Syntactic sugar for ``nw.col(columns).median()``
        - Results might slightly differ across backends due to differences in the
            underlying algorithms used to compute the median.

    Arguments:
        columns: Name(s) of the columns to use in the aggregation function

    Returns:
        A new expression.
    """
    return _stableify(nw.median(*columns))


def sum(*columns: str) -> Expr:
    """Sum all values.

    Note:
        Syntactic sugar for ``nw.col(columns).sum()``

    Arguments:
        columns: Name(s) of the columns to use in the aggregation function

    Returns:
        A new expression.
    """
    return _stableify(nw.sum(*columns))


def sum_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
    """Sum all values horizontally across columns.

    Warning:
        Unlike Polars, we support horizontal sum over numeric columns only.

    Arguments:
        exprs: Name(s) of the columns to use in the aggregation function. Accepts
            expression input.

    Returns:
        A new expression.
    """
    return _stableify(nw.sum_horizontal(*exprs))


def all_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
    r"""Compute the bitwise AND horizontally across columns.

    Arguments:
        exprs: Name(s) of the columns to use in the aggregation function. Accepts
            expression input.

    Returns:
        A new expression.
    """
    return _stableify(nw.all_horizontal(*exprs))


def any_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
    r"""Compute the bitwise OR horizontally across columns.

    Arguments:
        exprs: Name(s) of the columns to use in the aggregation function. Accepts
            expression input.

    Returns:
        A new expression.
    """
    return _stableify(nw.any_horizontal(*exprs))


def mean_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
    """Compute the mean of all values horizontally across columns.

    Arguments:
        exprs: Name(s) of the columns to use in the aggregation function. Accepts
            expression input.

    Returns:
        A new expression.
    """
    return _stableify(nw.mean_horizontal(*exprs))


def min_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
    """Get the minimum value horizontally across columns.

    Notes:
        We support `min_horizontal` over numeric columns only.

    Arguments:
        exprs: Name(s) of the columns to use in the aggregation function. Accepts
            expression input.

    Returns:
        A new expression.
    """
    return _stableify(nw.min_horizontal(*exprs))


def max_horizontal(*exprs: IntoExpr | Iterable[IntoExpr]) -> Expr:
    """Get the maximum value horizontally across columns.

    Notes:
        We support `max_horizontal` over numeric columns only.

    Arguments:
        exprs: Name(s) of the columns to use in the aggregation function. Accepts
            expression input.

    Returns:
        A new expression.
    """
    return _stableify(nw.max_horizontal(*exprs))


def concat_str(
    exprs: IntoExpr | Iterable[IntoExpr],
    *more_exprs: IntoExpr,
    separator: str = "",
    ignore_nulls: bool = False,
) -> Expr:
    r"""Horizontally concatenate columns into a single string column.

    Arguments:
        exprs: Columns to concatenate into a single string column. Accepts expression
            input. Strings are parsed as column names, other non-expression inputs are
            parsed as literals. Non-`String` columns are cast to `String`.
        *more_exprs: Additional columns to concatenate into a single string column,
            specified as positional arguments.
        separator: String that will be used to separate the values of each column.
        ignore_nulls: Ignore null values (default is `False`).
            If set to `False`, null values will be propagated and if the row contains any
            null values, the output is null.

    Returns:
        A new expression.
    """
    return _stableify(
        nw.concat_str(exprs, *more_exprs, separator=separator, ignore_nulls=ignore_nulls)
    )


class When(nw_f.When):
    @classmethod
    def from_when(cls, when: nw_f.When) -> When:
        return cls(when._predicate)

    def then(self, value: IntoExpr | NonNestedLiteral | _1DArray) -> Then:
        return Then.from_then(super().then(value))


class Then(nw_f.Then, Expr):
    @classmethod
    def from_then(cls, then: nw_f.Then) -> Then:
        return cls(then._to_compliant_expr, then._metadata)

    def otherwise(self, value: IntoExpr | NonNestedLiteral | _1DArray) -> Expr:
        return _stableify(super().otherwise(value))


def when(*predicates: IntoExpr | Iterable[IntoExpr]) -> When:
    """Start a `when-then-otherwise` expression.

    Expression similar to an `if-else` statement in Python. Always initiated by a
    `pl.when(<condition>).then(<value if condition>)`, and optionally followed by a
    `.otherwise(<value if condition is false>)` can be appended at the end. If not
    appended, and the condition is not `True`, `None` will be returned.

    Info:
        Chaining multiple `.when(<condition>).then(<value>)` statements is currently
        not supported.
        See [Narwhals#668](https://github.com/narwhals-dev/narwhals/issues/668).

    Arguments:
        predicates: Condition(s) that must be met in order to apply the subsequent
            statement. Accepts one or more boolean expressions, which are implicitly
            combined with `&`. String input is parsed as a column name.

    Returns:
        A "when" object, which `.then` can be called on.
    """
    return When.from_when(nw_f.when(*predicates))


@deprecate_native_namespace(required=True)
def new_series(
    name: str,
    values: Any,
    dtype: IntoDType | None = None,
    *,
    backend: ModuleType | Implementation | str | None = None,
    native_namespace: ModuleType | None = None,  # noqa: ARG001
) -> Series[Any]:
    """Instantiate Narwhals Series from iterable (e.g. list or array).

    Arguments:
        name: Name of resulting Series.
        values: Values of make Series from.
        dtype: (Narwhals) dtype. If not provided, the native library
            may auto-infer it from `values`.
        backend: specifies which eager backend instantiate to.

            `backend` can be specified in various ways

            - As `Implementation.<BACKEND>` with `BACKEND` being `PANDAS`, `PYARROW`,
                `POLARS`, `MODIN` or `CUDF`.
            - As a string: `"pandas"`, `"pyarrow"`, `"polars"`, `"modin"` or `"cudf"`.
            - Directly as a module `pandas`, `pyarrow`, `polars`, `modin` or `cudf`.
        native_namespace: The native library to use for DataFrame creation.

            *Deprecated* (v1.31.0)

            Please use `backend` instead. Note that `native_namespace` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).

    Returns:
        A new Series
    """
    backend = cast("ModuleType | Implementation | str", backend)
    return _stableify(_new_series_impl(name, values, dtype, backend=backend))


@deprecate_native_namespace(required=True)
def from_arrow(
    native_frame: IntoArrowTable,
    *,
    backend: ModuleType | Implementation | str | None = None,
    native_namespace: ModuleType | None = None,  # noqa: ARG001
) -> DataFrame[Any]:
    """Construct a DataFrame from an object which supports the PyCapsule Interface.

    Arguments:
        native_frame: Object which implements `__arrow_c_stream__`.
        backend: specifies which eager backend instantiate to.

            `backend` can be specified in various ways

            - As `Implementation.<BACKEND>` with `BACKEND` being `PANDAS`, `PYARROW`,
                `POLARS`, `MODIN` or `CUDF`.
            - As a string: `"pandas"`, `"pyarrow"`, `"polars"`, `"modin"` or `"cudf"`.
            - Directly as a module `pandas`, `pyarrow`, `polars`, `modin` or `cudf`.
        native_namespace: The native library to use for DataFrame creation.

            *Deprecated* (v1.31.0)

            Please use `backend` instead. Note that `native_namespace` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).

    Returns:
        A new DataFrame.
    """
    backend = cast("ModuleType | Implementation | str", backend)
    return _stableify(nw_f.from_arrow(native_frame, backend=backend))


@deprecate_native_namespace()
def from_dict(
    data: Mapping[str, Any],
    schema: Mapping[str, DType] | Schema | None = None,
    *,
    backend: ModuleType | Implementation | str | None = None,
    native_namespace: ModuleType | None = None,  # noqa: ARG001
) -> DataFrame[Any]:
    """Instantiate DataFrame from dictionary.

    Indexes (if present, for pandas-like backends) are aligned following
    the [left-hand-rule](../concepts/pandas_index.md/).

    Notes:
        For pandas-like dataframes, conversion to schema is applied after dataframe
        creation.

    Arguments:
        data: Dictionary to create DataFrame from.
        schema: The DataFrame schema as Schema or dict of {name: type}. If not
            specified, the schema will be inferred by the native library.
        backend: specifies which eager backend instantiate to. Only
            necessary if inputs are not Narwhals Series.

            `backend` can be specified in various ways

            - As `Implementation.<BACKEND>` with `BACKEND` being `PANDAS`, `PYARROW`,
                `POLARS`, `MODIN` or `CUDF`.
            - As a string: `"pandas"`, `"pyarrow"`, `"polars"`, `"modin"` or `"cudf"`.
            - Directly as a module `pandas`, `pyarrow`, `polars`, `modin` or `cudf`.
        native_namespace: The native library to use for DataFrame creation.

            *Deprecated* (v1.26.0)

            Please use `backend` instead. Note that `native_namespace` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).

    Returns:
        A new DataFrame.
    """
    return _stableify(nw_f.from_dict(data, schema, backend=backend))


@deprecate_native_namespace(required=True)
def from_numpy(
    data: _2DArray,
    schema: Mapping[str, DType] | Schema | Sequence[str] | None = None,
    *,
    backend: ModuleType | Implementation | str | None = None,
    native_namespace: ModuleType | None = None,  # noqa: ARG001
) -> DataFrame[Any]:
    """Construct a DataFrame from a NumPy ndarray.

    Notes:
        Only row orientation is currently supported.

        For pandas-like dataframes, conversion to schema is applied after dataframe
        creation.

    Arguments:
        data: Two-dimensional data represented as a NumPy ndarray.
        schema: The DataFrame schema as Schema, dict of {name: type}, or a sequence of str.
        backend: specifies which eager backend instantiate to.

            `backend` can be specified in various ways

            - As `Implementation.<BACKEND>` with `BACKEND` being `PANDAS`, `PYARROW`,
                `POLARS`, `MODIN` or `CUDF`.
            - As a string: `"pandas"`, `"pyarrow"`, `"polars"`, `"modin"` or `"cudf"`.
            - Directly as a module `pandas`, `pyarrow`, `polars`, `modin` or `cudf`.
        native_namespace: The native library to use for DataFrame creation.

            *Deprecated* (v1.31.0)

            Please use `backend` instead. Note that `native_namespace` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).

    Returns:
        A new DataFrame.
    """
    backend = cast("ModuleType | Implementation | str", backend)
    return _stableify(nw_f.from_numpy(data, schema, backend=backend))


@deprecate_native_namespace(required=True)
def read_csv(
    source: str,
    *,
    backend: ModuleType | Implementation | str | None = None,
    native_namespace: ModuleType | None = None,  # noqa: ARG001
    **kwargs: Any,
) -> DataFrame[Any]:
    """Read a CSV file into a DataFrame.

    Arguments:
        source: Path to a file.
        backend: The eager backend for DataFrame creation.
            `backend` can be specified in various ways

            - As `Implementation.<BACKEND>` with `BACKEND` being `PANDAS`, `PYARROW`,
                `POLARS`, `MODIN` or `CUDF`.
            - As a string: `"pandas"`, `"pyarrow"`, `"polars"`, `"modin"` or `"cudf"`.
            - Directly as a module `pandas`, `pyarrow`, `polars`, `modin` or `cudf`.
        native_namespace: The native library to use for DataFrame creation.

            *Deprecated* (v1.27.2)

            Please use `backend` instead. Note that `native_namespace` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).
        kwargs: Extra keyword arguments which are passed to the native CSV reader.
            For example, you could use
            `nw.read_csv('file.csv', backend='pandas', engine='pyarrow')`.

    Returns:
        DataFrame.
    """
    backend = cast("ModuleType | Implementation | str", backend)
    return _stableify(nw_f.read_csv(source, backend=backend, **kwargs))


@deprecate_native_namespace(required=True)
def scan_csv(
    source: str,
    *,
    backend: ModuleType | Implementation | str | None = None,
    native_namespace: ModuleType | None = None,  # noqa: ARG001
    **kwargs: Any,
) -> LazyFrame[Any]:
    """Lazily read from a CSV file.

    For the libraries that do not support lazy dataframes, the function reads
    a csv file eagerly and then converts the resulting dataframe to a lazyframe.

    Arguments:
        source: Path to a file.
        backend: The eager backend for DataFrame creation.
            `backend` can be specified in various ways

            - As `Implementation.<BACKEND>` with `BACKEND` being `PANDAS`, `PYARROW`,
                `POLARS`, `MODIN` or `CUDF`.
            - As a string: `"pandas"`, `"pyarrow"`, `"polars"`, `"modin"` or `"cudf"`.
            - Directly as a module `pandas`, `pyarrow`, `polars`, `modin` or `cudf`.
        native_namespace: The native library to use for DataFrame creation.

            *Deprecated* (v1.31.0)

            Please use `backend` instead. Note that `native_namespace` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).
        kwargs: Extra keyword arguments which are passed to the native CSV reader.
            For example, you could use
            `nw.scan_csv('file.csv', backend=pd, engine='pyarrow')`.

    Returns:
        LazyFrame.
    """
    backend = cast("ModuleType | Implementation | str", backend)
    return _stableify(nw_f.scan_csv(source, backend=backend, **kwargs))


@deprecate_native_namespace(required=True)
def read_parquet(
    source: str,
    *,
    backend: ModuleType | Implementation | str | None = None,
    native_namespace: ModuleType | None = None,  # noqa: ARG001
    **kwargs: Any,
) -> DataFrame[Any]:
    """Read into a DataFrame from a parquet file.

    Arguments:
        source: Path to a file.
        backend: The eager backend for DataFrame creation.
            `backend` can be specified in various ways

            - As `Implementation.<BACKEND>` with `BACKEND` being `PANDAS`, `PYARROW`,
                `POLARS`, `MODIN` or `CUDF`.
            - As a string: `"pandas"`, `"pyarrow"`, `"polars"`, `"modin"` or `"cudf"`.
            - Directly as a module `pandas`, `pyarrow`, `polars`, `modin` or `cudf`.
        native_namespace: The native library to use for DataFrame creation.

            *Deprecated* (v1.31.0)

            Please use `backend` instead. Note that `native_namespace` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).
        kwargs: Extra keyword arguments which are passed to the native parquet reader.
            For example, you could use
            `nw.read_parquet('file.parquet', backend=pd, engine='pyarrow')`.

    Returns:
        DataFrame.
    """
    backend = cast("ModuleType | Implementation | str", backend)
    return _stableify(nw_f.read_parquet(source, backend=backend, **kwargs))


@deprecate_native_namespace(required=True)
def scan_parquet(
    source: str,
    *,
    backend: ModuleType | Implementation | str | None = None,
    native_namespace: ModuleType | None = None,  # noqa: ARG001
    **kwargs: Any,
) -> LazyFrame[Any]:
    """Lazily read from a parquet file.

    For the libraries that do not support lazy dataframes, the function reads
    a parquet file eagerly and then converts the resulting dataframe to a lazyframe.

    Note:
        Spark like backends require a session object to be passed in `kwargs`.

        For instance:

        ```py
        import narwhals as nw
        from sqlframe.duckdb import DuckDBSession

        nw.scan_parquet(source, backend="sqlframe", session=DuckDBSession())
        ```

    Arguments:
        source: Path to a file.
        backend: The eager backend for DataFrame creation.
            `backend` can be specified in various ways

            - As `Implementation.<BACKEND>` with `BACKEND` being `PANDAS`, `PYARROW`,
                `POLARS`, `MODIN`, `CUDF`, `PYSPARK` or `SQLFRAME`.
            - As a string: `"pandas"`, `"pyarrow"`, `"polars"`, `"modin"`, `"cudf"`,
                `"pyspark"` or `"sqlframe"`.
            - Directly as a module `pandas`, `pyarrow`, `polars`, `modin`, `cudf`,
                `pyspark.sql` or `sqlframe`.
        native_namespace: The native library to use for DataFrame creation.

            *Deprecated* (v1.31.0)

            Please use `backend` instead. Note that `native_namespace` is still available
            (and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
            see [perfect backwards compatibility policy](../backcompat.md/).
        kwargs: Extra keyword arguments which are passed to the native parquet reader.
            For example, you could use
            `nw.scan_parquet('file.parquet', backend=pd, engine='pyarrow')`.

    Returns:
        LazyFrame.
    """
    backend = cast("ModuleType | Implementation | str", backend)
    return _stableify(nw_f.scan_parquet(source, backend=backend, **kwargs))


__all__ = [
    "Array",
    "Binary",
    "Boolean",
    "Categorical",
    "DataFrame",
    "Date",
    "Datetime",
    "Decimal",
    "Duration",
    "Enum",
    "Expr",
    "Field",
    "Float32",
    "Float64",
    "Implementation",
    "Int8",
    "Int16",
    "Int32",
    "Int64",
    "Int128",
    "LazyFrame",
    "List",
    "Object",
    "Schema",
    "Series",
    "String",
    "Struct",
    "Time",
    "UInt8",
    "UInt16",
    "UInt32",
    "UInt64",
    "UInt128",
    "Unknown",
    "all",
    "all_horizontal",
    "any_horizontal",
    "col",
    "concat",
    "concat_str",
    "dependencies",
    "dtypes",
    "exceptions",
    "exclude",
    "from_arrow",
    "from_dict",
    "from_native",
    "from_numpy",
    "generate_temporary_column_name",
    "get_level",
    "get_native_namespace",
    "is_ordered_categorical",
    "len",
    "lit",
    "max",
    "max_horizontal",
    "maybe_align_index",
    "maybe_convert_dtypes",
    "maybe_get_index",
    "maybe_reset_index",
    "maybe_set_index",
    "mean",
    "mean_horizontal",
    "median",
    "min",
    "min_horizontal",
    "narwhalify",
    "new_series",
    "nth",
    "read_csv",
    "read_parquet",
    "scan_csv",
    "scan_parquet",
    "selectors",
    "show_versions",
    "sum",
    "sum_horizontal",
    "to_native",
    "to_py_scalar",
    "when",
]
