
    \Mh!                     Z    d Z ddlmZ ddlZdgZ ej        d          dd            ZdS )	z;Functions for computing the harmonic centrality of a graph.    )partialNharmonic_centralitydistance)
edge_attrsc                 `   t          ||                     |          n| j                  }t          ||                     |          n| j                  }t                              |d          }d}t          |          t          |          k     r0d}||}}t          j        |           rt          j        | d          } t          t          j
        | |          }|D ]K} ||          }|                    |          D ](}	||	         }
|
dk    r||r|n|	xx         d|
z  z  cc<   )L|S )a%  Compute harmonic centrality for nodes.

    Harmonic centrality [1]_ of a node `u` is the sum of the reciprocal
    of the shortest path distances from all other nodes to `u`

    .. math::

        C(u) = \sum_{v \neq u} \frac{1}{d(v, u)}

    where `d(v, u)` is the shortest-path distance between `v` and `u`.

    If `sources` is given as an argument, the returned harmonic centrality
    values are calculated as the sum of the reciprocals of the shortest
    path distances from the nodes specified in `sources` to `u` instead
    of from all nodes to `u`.

    Notice that higher values indicate higher centrality.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    nbunch : container (default: all nodes in G)
      Container of nodes for which harmonic centrality values are calculated.

    sources : container (default: all nodes in G)
      Container of nodes `v` over which reciprocal distances are computed.
      Nodes not in `G` are silently ignored.

    distance : edge attribute key, optional (default=None)
      Use the specified edge attribute as the edge distance in shortest
      path calculations.  If `None`, then each edge will have distance equal to 1.

    Returns
    -------
    nodes : dictionary
      Dictionary of nodes with harmonic centrality as the value.

    See Also
    --------
    betweenness_centrality, load_centrality, eigenvector_centrality,
    degree_centrality, closeness_centrality

    Notes
    -----
    If the 'distance' keyword is set to an edge attribute key then the
    shortest-path length will be computed using Dijkstra's algorithm with
    that edge attribute as the edge weight.

    References
    ----------
    .. [1] Boldi, Paolo, and Sebastiano Vigna. "Axioms for centrality."
           Internet Mathematics 10.3-4 (2014): 222-262.
    Nr   FT)copy)weight   )setnbunch_iternodesdictfromkeyslennxis_directedreverser   shortest_path_lengthintersection)Gnbunchr   sources
centrality
transposedsplvdistuds              g/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/networkx/algorithms/centrality/harmonic.pyr   r   
   sP   t &*<v&&&!'JJFG,?!--(((QWMMGvq))JJ
6{{S\\!!
!6>! 	*
15)))A
")1X
>
>
>C 8 8s1vv$$T** 	8 	8AQAAvvJ-qqA...!a%7....		8     )NNN)__doc__	functoolsr   networkxr   __all___dispatchabler    r!   r    <module>r(      sr    A A           
! Z(((N N N )(N N Nr!   