
    \MhC                        d Z ddlZddlmZ g dZ ej        d          dd            Z ej        d          dd            Z ed	           ed
           ej        d          	 dd                                    Z	 ed	           ed
           ej        d          	 dd                                    Z
ddZdS )a{  Laplacian matrix of graphs.

All calculations here are done using the out-degree. For Laplacians using
in-degree, use `G.reverse(copy=False)` instead of `G` and take the transpose.

The `laplacian_matrix` function provides an unnormalized matrix,
while `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
and `directed_combinatorial_laplacian_matrix` are all normalized.
    N)not_implemented_for)laplacian_matrixnormalized_laplacian_matrixdirected_laplacian_matrix'directed_combinatorial_laplacian_matrixweight)
edge_attrsc           	         ddl }|t          |           }t          j        | ||d          }|j        \  }}|j                            |j                            |                    d          d||d                    }||z
  S )u  Returns the Laplacian matrix of G.

    The graph Laplacian is the matrix L = D - A, where
    A is the adjacency matrix and D is the diagonal matrix of node degrees.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    L : SciPy sparse array
      The Laplacian matrix of G.

    Notes
    -----
    For MultiGraph, the edges weights are summed.

    This returns an unnormalized matrix. For a normalized output,
    use `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
    or `directed_combinatorial_laplacian_matrix`.

    This calculation uses the out-degree of the graph `G`. To use the
    in-degree for calculations instead, use `G.reverse(copy=False)` and
    take the transpose.

    See Also
    --------
    :func:`~networkx.convert_matrix.to_numpy_array`
    normalized_laplacian_matrix
    directed_laplacian_matrix
    directed_combinatorial_laplacian_matrix
    :func:`~networkx.linalg.spectrum.laplacian_spectrum`

    Examples
    --------
    For graphs with multiple connected components, L is permutation-similar
    to a block diagonal matrix where each block is the respective Laplacian
    matrix for each component.

    >>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
    >>> print(nx.laplacian_matrix(G).toarray())
    [[ 1 -1  0  0  0]
     [-1  2 -1  0  0]
     [ 0 -1  1  0  0]
     [ 0  0  0  1 -1]
     [ 0  0  0 -1  1]]

    >>> edges = [
    ...     (1, 2),
    ...     (2, 1),
    ...     (2, 4),
    ...     (4, 3),
    ...     (3, 4),
    ... ]
    >>> DiG = nx.DiGraph(edges)
    >>> print(nx.laplacian_matrix(DiG).toarray())
    [[ 1 -1  0  0]
     [-1  2 -1  0]
     [ 0  0  1 -1]
     [ 0  0 -1  1]]

    Notice that node 4 is represented by the third column and row. This is because
    by default the row/column order is the order of `G.nodes` (i.e. the node added
    order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
    To control the node order of the matrix, use the `nodelist` argument.

    >>> print(nx.laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
    [[ 1 -1  0  0]
     [-1  2  0 -1]
     [ 0  0  1 -1]
     [ 0  0 -1  1]]

    This calculation uses the out-degree of the graph `G`. To use the
    in-degree for calculations instead, use `G.reverse(copy=False)` and
    take the transpose.

    >>> print(nx.laplacian_matrix(DiG.reverse(copy=False)).toarray().T)
    [[ 1 -1  0  0]
     [-1  1 -1  0]
     [ 0  0  2 -1]
     [ 0  0 -1  1]]

    References
    ----------
    .. [1] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
       The Science of Search Engine Rankings. Princeton University Press, 2006.

    r   Ncsrnodelistr   format   axisr   )	scipylistnxto_scipy_sparse_arrayshapesparse	csr_arrayspdiagssum)Gr   r   spAnmDs           _/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/networkx/linalg/laplacianmatrix.pyr   r      s    H 77
 XfUSSSA7DAq
	BI--aeeemmQ1U-SSTTAq5L    c           	      V   ddl }ddl}|t          |           }t          j        | ||d          }|j        \  }}|                    d          }|j                            |j        	                    |d||d                    }	|	|z
  }
|
                    d	          5  d
|                    |          z  }ddd           n# 1 swxY w Y   d||                    |          <   |j                            |j        	                    |d||d                    }||
|z  z  S )u  Returns the normalized Laplacian matrix of G.

    The normalized graph Laplacian is the matrix

    .. math::

        N = D^{-1/2} L D^{-1/2}

    where `L` is the graph Laplacian and `D` is the diagonal matrix of
    node degrees [1]_.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    N : SciPy sparse array
      The normalized Laplacian matrix of G.

    Notes
    -----
    For MultiGraph, the edges weights are summed.
    See :func:`to_numpy_array` for other options.

    If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is
    the adjacency matrix [2]_.

    This calculation uses the out-degree of the graph `G`. To use the
    in-degree for calculations instead, use `G.reverse(copy=False)` and
    take the transpose.

    For an unnormalized output, use `laplacian_matrix`.

    Examples
    --------

    >>> import numpy as np
    >>> edges = [
    ...     (1, 2),
    ...     (2, 1),
    ...     (2, 4),
    ...     (4, 3),
    ...     (3, 4),
    ... ]
    >>> DiG = nx.DiGraph(edges)
    >>> print(nx.normalized_laplacian_matrix(DiG).toarray())
    [[ 1.         -0.70710678  0.          0.        ]
     [-0.70710678  1.         -0.70710678  0.        ]
     [ 0.          0.          1.         -1.        ]
     [ 0.          0.         -1.          1.        ]]

    Notice that node 4 is represented by the third column and row. This is because
    by default the row/column order is the order of `G.nodes` (i.e. the node added
    order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
    To control the node order of the matrix, use the `nodelist` argument.

    >>> print(nx.normalized_laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
    [[ 1.         -0.70710678  0.          0.        ]
     [-0.70710678  1.          0.         -0.70710678]
     [ 0.          0.          1.         -1.        ]
     [ 0.          0.         -1.          1.        ]]
    >>> G = nx.Graph(edges)
    >>> print(nx.normalized_laplacian_matrix(G).toarray())
    [[ 1.         -0.70710678  0.          0.        ]
     [-0.70710678  1.         -0.5         0.        ]
     [ 0.         -0.5         1.         -0.70710678]
     [ 0.          0.         -0.70710678  1.        ]]

    See Also
    --------
    laplacian_matrix
    normalized_laplacian_spectrum
    directed_laplacian_matrix
    directed_combinatorial_laplacian_matrix

    References
    ----------
    .. [1] Fan Chung-Graham, Spectral Graph Theory,
       CBMS Regional Conference Series in Mathematics, Number 92, 1997.
    .. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized
       Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
       March 2007.
    .. [3] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
       The Science of Search Engine Rankings. Princeton University Press, 2006.
    r   Nr   r   r   r   r   ignore)divide      ?)numpyr   r   r   r   r   r   r   r   r   errstatesqrtisinf)r   r   r   npr   r   r   _diagsr!   L
diags_sqrtDHs                r"   r   r      sm   B 77
 XfUSSSA7DAqEEqEMME
	BI--eQ1U-KKLLA	AA	H	%	% * *2775>>)
* * * * * * * * * * * * * * *'(Jrxx
##$			RY..z1a5.QQ	R	RBR=s   $C		CC
undirected
multigraphffffff?c           	         ddl }ddl}t          | ||||          }|j        \  }}	|j        j                            |j        d          \  }
}|                                j	        }||
                                z  }|                    |                    |                    }|j                            |j                            |d||                    |z  |j                            |j                            d|z  d||                    z  }|                    t!          |                     }|||j        z   dz  z
  S )ab  Returns the directed Laplacian matrix of G.

    The graph directed Laplacian is the matrix

    .. math::

        L = I - \frac{1}{2} \left (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} \right )

    where `I` is the identity matrix, `P` is the transition matrix of the
    graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and
    zeros elsewhere [1]_.

    Depending on the value of walk_type, `P` can be the transition matrix
    induced by a random walk, a lazy random walk, or a random walk with
    teleportation (PageRank).

    Parameters
    ----------
    G : DiGraph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    walk_type : string or None, optional (default=None)
       One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
       (the default), then a value is selected according to the properties of `G`:
       - ``walk_type="random"`` if `G` is strongly connected and aperiodic
       - ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
       - ``walk_type="pagerank"`` for all other cases.

    alpha : real
       (1 - alpha) is the teleportation probability used with pagerank

    Returns
    -------
    L : NumPy matrix
      Normalized Laplacian of G.

    Notes
    -----
    Only implemented for DiGraphs

    The result is always a symmetric matrix.

    This calculation uses the out-degree of the graph `G`. To use the
    in-degree for calculations instead, use `G.reverse(copy=False)` and
    take the transpose.

    See Also
    --------
    laplacian_matrix
    normalized_laplacian_matrix
    directed_combinatorial_laplacian_matrix

    References
    ----------
    .. [1] Fan Chung (2005).
       Laplacians and the Cheeger inequality for directed graphs.
       Annals of Combinatorics, 9(1), 2005
    r   Nr   r   	walk_typealphar   kr'          @)r(   r   _transition_matrixr   r   linalgeigsTflattenrealr   r*   absr   r   identitylen)r   r   r   r7   r8   r,   r   Pr   r    evalsevecsvpsqrtpQIs                    r"   r   r      sE   P  		HVy	 	 	A 7DAq9#(((22LE5A	AEEGGAGGBFF1IIE 		BI--eQ1==>>
	 )

bi//eQ1EE
F
F	G  	CFFAAC3r#   c                    ddl }t          | ||||          }|j        \  }}|j        j                            |j        d          \  }	}
|
                                j        }||	                                z  }|j        
                    |j                            |d||                                                    }|||z  |j        |z  z   dz  z
  S )a4  Return the directed combinatorial Laplacian matrix of G.

    The graph directed combinatorial Laplacian is the matrix

    .. math::

        L = \Phi - \frac{1}{2} \left (\Phi P + P^T \Phi \right)

    where `P` is the transition matrix of the graph and `\Phi` a matrix
    with the Perron vector of `P` in the diagonal and zeros elsewhere [1]_.

    Depending on the value of walk_type, `P` can be the transition matrix
    induced by a random walk, a lazy random walk, or a random walk with
    teleportation (PageRank).

    Parameters
    ----------
    G : DiGraph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    walk_type : string or None, optional (default=None)
        One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
        (the default), then a value is selected according to the properties of `G`:
        - ``walk_type="random"`` if `G` is strongly connected and aperiodic
        - ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
        - ``walk_type="pagerank"`` for all other cases.

    alpha : real
       (1 - alpha) is the teleportation probability used with pagerank

    Returns
    -------
    L : NumPy matrix
      Combinatorial Laplacian of G.

    Notes
    -----
    Only implemented for DiGraphs

    The result is always a symmetric matrix.

    This calculation uses the out-degree of the graph `G`. To use the
    in-degree for calculations instead, use `G.reverse(copy=False)` and
    take the transpose.

    See Also
    --------
    laplacian_matrix
    normalized_laplacian_matrix
    directed_laplacian_matrix

    References
    ----------
    .. [1] Fan Chung (2005).
       Laplacians and the Cheeger inequality for directed graphs.
       Annals of Combinatorics, 9(1), 2005
    r   Nr6   r   r9   r;   )r   r<   r   r   r=   r>   r?   r@   rA   r   r   r   toarray)r   r   r   r7   r8   r   rE   r   r    rF   rG   rH   rI   Phis                 r"   r   r   a  s    N 	HVy	 	 	A 7DAq9#(((22LE5A	AEEGGA )

bi//1a;;
<
<
D
D
F
FC#'AC#I%,,,r#   c                 ^   ddl }ddl}|0t          j        |           rt          j        |           rd}nd}nd}t          j        | ||t                    }|j        \  }}	|dv r|j        	                    |j        
                    d|                    d	
          z  d||                    }
|dk    r|
|z  }n|j        	                    |j                            |                    }||
|z  z   dz  }n|dk    rd|cxk     rd	k     sn t          j        d          |                                }d	|z  ||                    d	
          dk    ddf<   ||                    d	
          |j        ddf         j        z  }||z  d	|z
  |z  z   }nt          j        d          |S )a  Returns the transition matrix of G.

    This is a row stochastic giving the transition probabilities while
    performing a random walk on the graph. Depending on the value of walk_type,
    P can be the transition matrix induced by a random walk, a lazy random walk,
    or a random walk with teleportation (PageRank).

    Parameters
    ----------
    G : DiGraph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    walk_type : string or None, optional (default=None)
       One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
       (the default), then a value is selected according to the properties of `G`:
        - ``walk_type="random"`` if `G` is strongly connected and aperiodic
        - ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
        - ``walk_type="pagerank"`` for all other cases.

    alpha : real
       (1 - alpha) is the teleportation probability used with pagerank

    Returns
    -------
    P : numpy.ndarray
      transition matrix of G.

    Raises
    ------
    NetworkXError
        If walk_type not specified or alpha not in valid range
    r   Nrandomlazypagerank)r   r   dtype)rQ   rR   r'   r   r   r;   zalpha must be between 0 and 1z+walk_type must be random, lazy, or pagerank)r(   r   r   is_strongly_connectedis_aperiodicr   floatr   r   r   r   r   rC   NetworkXErrorrN   newaxisr?   )r   r   r   r7   r8   r,   r   r   r   r    DIrE   rL   s                r"   r<   r<     s   R #A&& 	#q!! #$		"		"I
 XfERRRA7DAq&&&Y  !2!23A3F1a!P!PQQ  QAA 	##BI$6$6q$9$9::AR!Vs"AA	j	 	 EA"#BCCCIIKK#$q5!%%Q%--1
aaa
 1bj!!!m,..AIUa'LMMMHr#   )Nr   )Nr   Nr4   )__doc__networkxr   networkx.utilsr   __all___dispatchabler   r   r   r   r<    r#   r"   <module>ra      s        . . . . . .   X&&&k k k '&k\ X&&&p p p '&pn \""\""X&&&=A^ ^ ^ '& #" #"^B \""\""X&&&=AS- S- S- '& #" #"S-lN N N N N Nr#   