
    cMhJ-                    :   d Z ddlmZ ddlmZmZmZ ddlZddlm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZmZmZ ddlmZmZmZmZ ddlm Z  ddl!m"c m#Z$ ddl%m&Z& erddl'm(Z(m)Z) ddlm*Z* ddl+m,Z, dZ-d)dZ.d Z/d*dZ0d+dZ1	 	 	 d,d-d%Z2d.d(Z3dS )/zH
Table Schema builders

https://specs.frictionlessdata.io/table-schema/
    )annotations)TYPE_CHECKINGAnycastN)lib)ujson_loads)	timezones)freq_to_period_freqstr)find_stack_level)	_registry)is_bool_dtypeis_integer_dtypeis_numeric_dtypeis_string_dtype)CategoricalDtypeDatetimeTZDtypeExtensionDtypePeriodDtype)	DataFrame)	to_offset)DtypeObjJSONSerializable)Series)
MultiIndexz1.4.0xr   returnstrc                P   t          |           rdS t          |           rdS t          |           rdS t          j        | d          st          | t          t          f          rdS t          j        | d          rdS t          | t                    rdS t          |           rd	S dS )
a  
    Convert a NumPy / pandas type to its corresponding json_table.

    Parameters
    ----------
    x : np.dtype or ExtensionDtype

    Returns
    -------
    str
        the Table Schema data types

    Notes
    -----
    This table shows the relationship between NumPy / pandas dtypes,
    and Table Schema dtypes.

    ==============  =================
    Pandas type     Table Schema type
    ==============  =================
    int64           integer
    float64         number
    bool            boolean
    datetime64[ns]  datetime
    timedelta64[ns] duration
    object          str
    categorical     any
    =============== =================
    integerbooleannumberMdatetimemdurationanystring)
r   r   r   r   is_np_dtype
isinstancer   r   r   r   )r   s    \/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/pandas/io/json/_table_schema.pyas_json_table_typer+   5   s    <  y	q		 y	!		 x	C	 	  	Jq?K2P$Q$Q 	z	C	 	  z	A~	&	& u			 xu    c                D   t          j        | j        j         r| j        j        }t	          |          dk    r3| j        j        dk    r#t          j        dt                                 nNt	          |          dk    r;t          d |D                       r"t          j        dt                                 | S | 
                                } | j        j        dk    r)t          j        | j        j                  | j        _        n| j        j        pd| j        _        | S )z?Sets index names to 'index' for regular, or 'level_x' for Multi   indexz-Index name of 'index' is not round-trippable.)
stacklevelc              3  @   K   | ]}|                     d           V  dS level_N
startswith.0r   s     r*   	<genexpr>z$set_default_names.<locals>.<genexpr>n   s.      !F!FQ!,,x"8"8!F!F!F!F!F!Fr,   z<Index names beginning with 'level_' are not round-trippable.)comall_not_noner/   nameslennamewarningswarnr   r&   copynlevelsfill_missing_names)datanmss     r*   set_default_namesrE   e   s   
)* js88q==TZ_77M?+--     XX\\c!F!F#!F!F!FFF\MN+--    99;;DzA1$*2BCC
*/4W
Kr,   dict[str, JSONSerializable]c                   | j         }| j        d}n| j        }|t          |          d}t          |t                    r(|j        }|j        }dt          |          i|d<   ||d<   nt          |t                    r|j	        j
        |d<   nct          |t                    r/t          j        |j                  rd|d<   n/|j        j        |d<   nt          |t                     r
|j        |d	<   |S )
Nvalues)r=   typeenumconstraintsorderedfreqUTCtzextDtype)dtyper=   r+   r)   r   
categoriesrL   listr   rM   freqstrr   r	   is_utcrO   zoner   )arrrQ   r=   fieldcatsrL   s         r*   !convert_pandas_type_to_json_fieldrZ   }   s   IE
xx"5))* *E
 %)** '- &T

3m"i	E;	'	' 
'
*f	E?	+	+ 'EH%% 	(E$KK  (-E$KK	E>	*	* '!JjLr,   str | CategoricalDtypec                   | d         }|dk    rdS |dk    r|                      dd          S |dk    r|                      dd          S |d	k    r|                      dd
          S |dk    rdS |dk    rq|                      d          rd| d          dS |                      d          r9t          | d                   }|j        |j        }}t	          ||          }d| dS dS |dk    rKd| v r'd| v r#t          | d         d         | d                   S d| v rt          j        | d                   S dS t          d|           )a  
    Converts a JSON field descriptor into its corresponding NumPy / pandas type

    Parameters
    ----------
    field
        A JSON field descriptor

    Returns
    -------
    dtype

    Raises
    ------
    ValueError
        If the type of the provided field is unknown or currently unsupported

    Examples
    --------
    >>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
    'int64'

    >>> convert_json_field_to_pandas_type(
    ...     {
    ...         "name": "a_categorical",
    ...         "type": "any",
    ...         "constraints": {"enum": ["a", "b", "c"]},
    ...         "ordered": True,
    ...     }
    ... )
    CategoricalDtype(categories=['a', 'b', 'c'], ordered=True, categories_dtype=object)

    >>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
    'datetime64[ns]'

    >>> convert_json_field_to_pandas_type(
    ...     {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
    ... )
    'datetime64[ns, US/Central]'
    rI   r'   objectr   rP   int64r!   float64r    boolr%   timedelta64r#   rO   zdatetime64[ns, ]rM   zperiod[zdatetime64[ns]r&   rK   rL   rJ   )rR   rL   z#Unsupported or invalid field type: )	getr   nr=   r
   r   registryfind
ValueError)rX   typoffsetfreq_n	freq_namerM   s         r*   !convert_json_field_to_pandas_typerl      s   R -C
hx				yyW---	yyY///				yyV,,,	
		}	
		99T?? 
	$3U4[3333YYv 	$uV}--F &&+IF)&)<<D$T$$$$##	E!!i5&8&8# /7yAQ    5  =z!23338
@3@@
A
AAr,   TrC   DataFrame | Seriesr/   r`   primary_keybool | Noneversionc                   |du rt          |           } i }g }|r| j        j        dk    rnt          d| j                  | _        t	          | j        j        | j        j                  D ].\  }}t          |          }||d<   |                    |           /n'|                    t          | j                             | j	        dk    r=| 
                                D ]'\  }	}
|                    t          |
                     (n"|                    t          |                      ||d<   |r?| j        j        r3|1| j        j        dk    r| j        j        g|d<   n| j        j        |d<   n|||d<   |r
t          |d<   |S )	a  
    Create a Table schema from ``data``.

    Parameters
    ----------
    data : Series, DataFrame
    index : bool, default True
        Whether to include ``data.index`` in the schema.
    primary_key : bool or None, default True
        Column names to designate as the primary key.
        The default `None` will set `'primaryKey'` to the index
        level or levels if the index is unique.
    version : bool, default True
        Whether to include a field `pandas_version` with the version
        of pandas that last revised the table schema. This version
        can be different from the installed pandas version.

    Returns
    -------
    dict

    Notes
    -----
    See `Table Schema
    <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
    conversion types.
    Timedeltas as converted to ISO8601 duration format with
    9 decimal places after the seconds field for nanosecond precision.

    Categoricals are converted to the `any` dtype, and use the `enum` field
    constraint to list the allowed values. The `ordered` attribute is included
    in an `ordered` field.

    Examples
    --------
    >>> from pandas.io.json._table_schema import build_table_schema
    >>> df = pd.DataFrame(
    ...     {'A': [1, 2, 3],
    ...      'B': ['a', 'b', 'c'],
    ...      'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ...     }, index=pd.Index(range(3), name='idx'))
    >>> build_table_schema(df)
    {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '1.4.0'}
    Tr.   r   r=   fieldsN
primaryKeypandas_version)rE   r/   rA   r   ziplevelsr;   rZ   appendndimitems	is_uniquer=   TABLE_SCHEMA_VERSION)rC   r/   rn   rp   schemarr   levelr=   	new_fieldcolumnss              r*   build_table_schemar      s   p }} &&FF I:!!lDJ77DJ"4:#4dj6FGG ) )t=eDD	$(	&!i(((()
 MM;DJGGHHHy1}} 	@ 	@IFAMM;A>>????	@ 	7==>>>F8 +% ++*=:""$(JO#4F<  #':#3F<  		 *| 8#7 Mr,   precise_floatr   c                @   t          | |          }d |d         d         D             }t          |d         |          |         }d |d         d         D             }d|                                v rt          d	          |                    |          }d
|d         v r{|                    |d         d
                   }t          |j        j                  dk    r|j        j	        dk    rd|j        _	        n d |j        j        D             |j        _        |S )a  
    Builds a DataFrame from a given schema

    Parameters
    ----------
    json :
        A JSON table schema
    precise_float : bool
        Flag controlling precision when decoding string to double values, as
        dictated by ``read_json``

    Returns
    -------
    df : DataFrame

    Raises
    ------
    NotImplementedError
        If the JSON table schema contains either timezone or timedelta data

    Notes
    -----
        Because :func:`DataFrame.to_json` uses the string 'index' to denote a
        name-less :class:`Index`, this function sets the name of the returned
        :class:`DataFrame` to ``None`` when said string is encountered with a
        normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
        applies to any strings beginning with 'level_'. Therefore, an
        :class:`Index` name of 'index'  and :class:`MultiIndex` names starting
        with 'level_' are not supported.

    See Also
    --------
    build_table_schema : Inverse function.
    pandas.read_json
    )r   c                    g | ]
}|d          S r=    r7   rX   s     r*   
<listcomp>z&parse_table_schema.<locals>.<listcomp>k  s    FFF5vFFFr,   r|   rr   rC   )columnsc                :    i | ]}|d          t          |          S r   )rl   r   s     r*   
<dictcomp>z&parse_table_schema.<locals>.<dictcomp>n  s7        	f8??  r,   ra   z<table="orient" can not yet read ISO-formatted Timedelta datars   r.   r/   Nc                @    g | ]}|                     d           rdn|S r2   r4   r6   s     r*   r   z&parse_table_schema.<locals>.<listcomp>  s:       :;X..5A  r,   )
r   r   rH   NotImplementedErrorastype	set_indexr<   r/   r;   r=   )jsonr   table	col_orderdfdtypess         r*   parse_table_schemar   F  s8   H M:::EFFE(OH,EFFFI	5=)	4	4	4Y	?B 8_X.  F ''!J
 
 	
 
6		BuX&&\\%/,788rx~!##x}'' $ ?Ax~  BHN Ir,   )r   r   r   r   )r   rF   )r   r[   )TNT)
rC   rm   r/   r`   rn   ro   rp   r`   r   rF   )r   r`   r   r   )4__doc__
__future__r   typingr   r   r   r>   pandas._libsr   pandas._libs.jsonr   pandas._libs.tslibsr	   pandas._libs.tslibs.dtypesr
   pandas.util._exceptionsr   pandas.core.dtypes.baser   re   pandas.core.dtypes.commonr   r   r   r   pandas.core.dtypes.dtypesr   r   r   r   pandasr   pandas.core.commoncorecommonr9   pandas.tseries.frequenciesr   pandas._typingr   r   r   pandas.core.indexes.multir   r{   r+   rE   rZ   rl   r   r   r   r,   r*   <module>r      s   
 # " " " " "         
        ) ) ) ) ) ) ) ) ) ) ) ) = = = = = = 4 4 4 4 4 4 9 9 9 9 9 9                                               0 0 0 0 0 0 5       
 444444  - - - -`  0   @JB JB JB JB^ #	Y Y Y Y Yx? ? ? ? ? ?r,   