
    _-Ph                         d Z ddlZd Zd ZdS )z.Compute coefficients for polynomial smoothers.    Nc                 6   | |k    s| dk    rt          d|  d| d          t          j        t          j        t          j        |          dz   z  |z            }d|| z
  z  d|z   z  | z   }t          j        |          }|t          j        |d          z  }|S )a  Chebyshev polynomial coefficients for the interval [a,b].

    Parameters
    ----------
    a,b : float
        The left and right endpoints of the interval.
    degree : int
        Degree of desired Chebyshev polynomial

    Returns
    -------
    Coefficients of the Chebyshev polynomial C(t) with minimum
    magnitude on the interval [a,b] such that C(0) = 1.0.
    The coefficients are returned in descending order.

    Notes
    -----
    a,b typically represent the interval of the spectrum for some matrix
    that you wish to damp with a Chebyshev smoother.

    Examples
    --------
    >>> from pyamg.relaxation.chebyshev import chebyshev_polynomial_coefficients
    >>> print(chebyshev_polynomial_coefficients(1.0,2.0, 3))
    [-0.32323232  1.45454545 -2.12121212  1.        ]

    r   zinvalid interval [,]g      ?   )
ValueErrornpcospiarangepolypolyval)abdegree	std_rootsscaled_rootsscaled_polys         Z/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/pyamg/relaxation/chebyshev.py!chebyshev_polynomial_coefficientsr      s    8 	Avva6a66!666777 ru	& 1 1C 786ABBI !A#;!i-014L ',''K 2:k1---K    c           	         | dz  dt          j        dt           j        z  t          j        |d          dz   z  d|z  dz   z            z
  z  }d|z  }t          j        |          ddd         }| d|z  dz   dz  z  }t          j        ||          }t          j        d	|z  |z  dgf          }t          j        ||          }|dd          }||fS )
a  Determine the coefficients for a MLS polynomial smoother.

    Parameters
    ----------
    rho : float
        Spectral radius of the matrix in question
    degree : int
        Degree of polynomial coefficients to generate

    Returns
    -------
    Tuple of arrays (coeffs,roots) containing the
    coefficients for the (symmetric) polynomial smoother and
    the roots of polynomial prolongation smoother.

    The coefficients of the polynomial are in descending order

    References
    ----------
    .. [1] Parallel multigrid smoothing: polynomial versus Gauss--Seidel
       M. F. Adams, M. Brezina, J. J. Hu, and R. S. Tuminaro
       J. Comp. Phys., 188 (2003), pp. 593--610

    Examples
    --------
    >>> from pyamg.relaxation.chebyshev import mls_polynomial_coefficients
    >>> mls = mls_polynomial_coefficients(2.0, 2)
    >>> print(mls[0])  # coefficients
    [   6.4  -48.   144.  -220.   180.   -75.8   14.5]
    >>> print(mls[1])  # roots
    [1.4472136 0.5527864]

    g       @g      ?   float64)dtyper   Ng      )r   r	   r
   r   r   polymulhstack)rhor   rootsSSSA_maxS_hatcoeffss          r   mls_polynomial_coefficientsr$   4   s    J G	rvagryyAAAAEFF
SVWXX	XZE IE 	tttACJsNQ&'GJq!EIWe+aS122E Zq!!FSbSk\FE?r   )__doc__numpyr   r   r$    r   r   <module>r(      s@    4 4    + + +\6 6 6 6 6r   