"""Test utils."""
import numpy as np
from scipy.sparse import (csr_matrix, csc_matrix, isspmatrix,
                          bsr_matrix, isspmatrix_bsr,
                          spdiags)

from numpy.testing import (TestCase, assert_equal, assert_almost_equal,
                           assert_array_almost_equal, assert_array_equal)

import pyamg

from pyamg.util.utils import (diag_sparse, profile_solver, to_type,
                              type_prep, get_diagonal,
                              scale_rows, scale_columns,
                              get_block_diag, symmetric_rescaling, symmetric_rescaling_sa,
                              filter_operator, scale_T,
                              get_Cpt_params, compute_BtBinv, eliminate_diag_dom_nodes)

from pyamg.relaxation.utils import relaxation_as_linear_operator


class TestUtils(TestCase):
    def test_diag_sparse(self):
        # check sparse -> array
        A = np.array([[-4]])
        assert_equal(diag_sparse(csr_matrix(A)), [-4])

        A = np.array([[1, 0, -5], [-2, 5, 0]])
        assert_equal(diag_sparse(csr_matrix(A)), [1, 5])

        A = np.array([[0, 1], [0, -5]])
        assert_equal(diag_sparse(csr_matrix(A)), [0, -5])

        A = np.array([[1.3, -4.7, 0], [-2.23, 5.5, 0], [9, 0, -2]])
        assert_equal(diag_sparse(csr_matrix(A)), [1.3, 5.5, -2])

        # check array -> sparse
        A = np.array([[-4]])
        assert_equal(diag_sparse(np.array([-4])).toarray(),
                     csr_matrix(A).toarray())

        A = np.array([[1, 0], [0, 5]])
        assert_equal(diag_sparse(np.array([1, 5])).toarray(),
                     csr_matrix(A).toarray())

        A = np.array([[0, 0], [0, -5]])
        assert_equal(diag_sparse(np.array([0, -5])).toarray(),
                     csr_matrix(A).toarray())

        A = np.array([[1.3, 0, 0], [0, 5.5, 0], [0, 0, -2]])
        assert_equal(diag_sparse(np.array([1.3, 5.5, -2])).toarray(),
                     csr_matrix(A).toarray())

    def test_scale_rows(self):
        Aorig = np.array([[0.0, 1, 0], [2, 0, 3], [4, 5, 6]])
        v = np.array([7.0, 8, 9])
        Ascaled = np.array([[0.0, 7, 0], [16, 0, 24], [36, 45, 54]])

        # test CSR
        A = csr_matrix(Aorig)
        A = scale_rows(A, v)
        assert_equal(A.toarray(), Ascaled)

        # test CSC
        A = csc_matrix(Aorig)
        A = scale_rows(A, v)
        assert_equal(A.toarray(), Ascaled)

    def test_scale_columns(self):
        Aorig = np.array([[0.0, 1, 0], [2, 0, 3], [4, 5, 6]]).T
        v = np.array([7.0, 8, 9])
        Ascaled = np.array([[0.0, 7, 0], [16, 0, 24], [36, 45, 54]]).T

        # test CSR
        A = csr_matrix(Aorig)
        A = scale_columns(A, v)
        assert_equal(A.toarray(), Ascaled)

        # test CSC
        A = csc_matrix(Aorig)
        A = scale_columns(A, v)
        assert_equal(A.toarray(), Ascaled)

    def test_symmetric_rescaling(self):
        cases = []
        cases.append(diag_sparse(np.array([1, 2, 3, 4])))
        cases.append(diag_sparse(np.array([1, 0, 3, 4])))

        A = np.array([[5.5, 3.5, 4.8],
                      [2., 9.9, 0.5],
                      [6.5, 2.6, 5.7]])

        # test csr
        A = csr_matrix(A)
        cases.append(A)
        P = diag_sparse([1, 0, 1])
        cases.append(P*A*P)
        P = diag_sparse([0, 1, 0])
        cases.append(P*A*P)
        P = diag_sparse([1, -1, 1])
        cases.append(P*A*P)

        # test csc
        A = csc_matrix(A)
        cases.append(A)

        for A in cases:
            D_sqrt, D_sqrt_inv, DAD = symmetric_rescaling(A)

            assert_almost_equal(diag_sparse(A) > 0, diag_sparse(DAD))
            assert_almost_equal(diag_sparse(DAD), D_sqrt*D_sqrt_inv)

            D_sqrt, D_sqrt_inv = diag_sparse(D_sqrt), diag_sparse(D_sqrt_inv)
            assert_almost_equal((D_sqrt_inv*A*D_sqrt_inv).toarray(),
                                DAD.toarray())

    def test_symmetric_rescaling_sa(self):
        cases = []
        # case 1
        e = np.ones((5, 1)).ravel()
        data = [-1*e, 2*e, -1*e]
        A = spdiags(data, [-1, 0, 1], 5, 5).tocsr()
        B = e.copy().reshape(-1, 1)
        DAD_answer = np.array([[1., -0.5, 0., 0., 0.],
                               [-0.5, 1., -0.5, 0., 0.],
                               [0., -0.5, 1., -0.5, 0.],
                               [0., 0., -0.5, 1., -0.5],
                               [0., 0., 0., -0.5, 1.]])
        DB_answer = np.sqrt(2*e.reshape(-1, 1))
        #           matrix   B    BH   expected matrix  expected B  expected BH
        cases.append((A, B, None, DAD_answer, DB_answer, None))

        # case 2
        A2 = A.copy()
        A2.symmetry = 'nonsymmetric'
        cases.append((A2, B.copy(), B.copy(), DAD_answer, DB_answer,
                      DB_answer))

        # case 3
        A3 = A.copy()
        A3.symmetry = 'hermitian'
        cases.append((A3, B.copy(), None, DAD_answer, DB_answer, None))

        # case 4
        B4 = np.hstack((B.copy(), 2*B.copy()))
        DB4_answer = np.sqrt(2)*B4
        A4 = A.copy()
        A4.symmetry = 'nonsymmetric'
        cases.append((A4, B4, B4.copy(), DAD_answer, DB4_answer, DB4_answer))

        for case in cases:
            [A, B, BH, DAD_answer, DB_answer, DBH_answer] = case

            [DAD, DB, DBH] = symmetric_rescaling_sa(A, B, BH=BH)
            assert_array_almost_equal(DAD.toarray(), DAD_answer)
            assert_array_almost_equal(DB, DB_answer)
            if DBH_answer is not None:
                assert_array_almost_equal(DBH, DBH_answer)

    def test_profile_solver(self):
        from scipy.sparse.linalg import cg
        from pyamg.gallery import poisson
        from pyamg.aggregation import smoothed_aggregation_solver

        A = poisson((100, 100), format='csr')
        ml = smoothed_aggregation_solver(A)

        opts = []
        opts.append({})

        nextopt = dict(accel=cg, rtol=1e-10, atol=0)
        opts.append(nextopt)

        for kwargs in opts:
            residuals = profile_solver(ml, **kwargs)
        del residuals

    def test_get_block_diag(self):
        A = csr_matrix(np.arange(1, 37, dtype=float).reshape(6, 6))
        block_diag = get_block_diag(A, blocksize=1, inv_flag=False)
        assert_array_almost_equal(np.ravel(block_diag), A.diagonal())

        block_diag = get_block_diag(A, blocksize=2, inv_flag=False)
        answer = np.array([[[1., 2.],
                            [7., 8.]],
                           [[15., 16.],
                            [21., 22.]],
                           [[29., 30.],
                            [35., 36.]]])
        assert_array_almost_equal(np.ravel(block_diag), np.ravel(answer))

        block_diag_inv = get_block_diag(A, blocksize=2, inv_flag=True)
        answer = np.array([[[-1.33333333, 0.33333333],
                            [1.16666667, -0.16666667]],
                           [[-3.66666667, 2.66666667],
                            [3.5, -2.5]],
                           [[-6., 5.],
                            [5.83333333, -4.83333333]]])
        assert_array_almost_equal(np.ravel(block_diag_inv), np.ravel(answer),
                                  decimal=3)

        # try singular (1,1) block, a zero (2,2) block and a zero (0,2) block
        A = bsr_matrix(np.array([1., 2., 3., 4., 0., 0.,
                                 5., 6., 7., 8., 0., 0.,
                                 9., 10., 11., 11., 12., 13.,
                                 14., 15., 16., 16., 18., 19.,
                                 20., 21., 22., 23., 0., 0.,
                                 26., 27., 28., 29., 0., 0.]).reshape(6, 6),
                       blocksize=(3, 3))
        block_diag_inv = get_block_diag(A, blocksize=2, inv_flag=True)
        answer = np.array([[[-1.5, 0.5],
                            [1.25, -0.25]],
                           [[0.01458886, 0.02122016],
                            [0.01458886, 0.02122016]],
                           [[0., 0.],
                            [0., 0.]]])
        assert_array_almost_equal(np.ravel(block_diag_inv), np.ravel(answer),
                                  decimal=3)

        # try with different types of zero blocks
        A = bsr_matrix(np.array([0., 0., 3., 4., 0., 0.,
                                 0., 0., 7., 8., 0., 0.,
                                 0., 0., 0., 0., 0., 0.,
                                 0., 0., 0., 0., 0., 0.,
                                 0., 0., 0., 0., 22., 23.,
                                 0., 0., 0., 0., 28., 29.]).reshape(6, 6),
                       blocksize=(2, 2))
        block_diag_inv = get_block_diag(A, blocksize=2, inv_flag=False)
        answer = np.array([[[0., 0.],
                            [0., 0.]],
                           [[0., 0.],
                            [0., 0.]],
                           [[22., 23.],
                            [28., 29.]]])
        assert_array_almost_equal(np.ravel(block_diag_inv), np.ravel(answer),
                                  decimal=3)

    def test_relaxation_as_linear_operator(self):
        As = []
        bs = []
        xs = []
        methods = ['gauss_seidel', 'jacobi', 'block_gauss_seidel',
                   'block_jacobi']
        params = [{}, {'iterations': 2}]
        As.append(pyamg.gallery.poisson((10, 10), format='csr'))
        As.append(1.0j*pyamg.gallery.poisson((10, 10), format='csr'))
        As.append(1.0j*pyamg.gallery.elasticity.linear_elasticity((20, 20))[0])
        As.append(pyamg.gallery.elasticity.linear_elasticity((20, 20))[0])
        for A in As:
            if A.dtype == 'complex':
                xs.append(np.random.rand(A.shape[0], 1)
                          + 1.0j * np.random.rand(A.shape[0], 1))
                bs.append(np.random.rand(A.shape[0], 1)
                          + 1.0j * np.random.rand(A.shape[0], 1))
            else:
                bs.append(np.random.rand(A.shape[0], 1))
                xs.append(np.random.rand(A.shape[0], 1))

        for method in methods:
            for kwargs in params:
                for (A, x, b) in zip(As, xs, bs):
                    kwargs_linop = dict(kwargs)
                    # run relaxation as a linear operator
                    if kwargs_linop == dict({}):
                        relax = relaxation_as_linear_operator(method, A, b)
                    else:
                        fmethod = (method, kwargs_linop)
                        relax = relaxation_as_linear_operator(fmethod, A, b)
                    x_linop = relax * x

                    # manually run the relaxation routine
                    relax2 = getattr(pyamg.relaxation.relaxation, method)
                    x_gold = x.copy()
                    blockflag = False
                    kwargs_gold = dict(kwargs)
                    # deal with block matrices
                    if method.startswith('block') and isspmatrix_bsr(A):
                        blockflag = True
                        kwargs_gold['blocksize'] = A.blocksize[0]
                    # deal with omega and jacobi
                    # --> note that we assume the default setup for jacobi uses
                    # omega = 1/rho
                    if method.endswith('jacobi'):
                        if blockflag:
                            kwargs_gold['omega'] = 1.0/A.rho_block_D_inv
                        else:
                            kwargs_gold['omega'] = 1.0/A.rho_D_inv

                    relax2(A, x_gold, b, **kwargs_gold)

                    assert_array_almost_equal(x_linop, x_gold)

    def test_filter_operator(self):
        # Basic tests of dimension 1 and 2 problems
        # 1x1
        A = csr_matrix(np.array([[1.2]]))
        C = csr_matrix(np.array([[1.]]))
        B = np.array([[0.5]])
        Bf = np.array([[1.5]])
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[3.0]])
        assert_array_almost_equal(A_known, A_filter)
        # 1x1, but with no entries in C
        C = csr_matrix(np.array([[0.]]))
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[0.0]])
        assert_array_almost_equal(A_known, A_filter)
        # 1x1, but with no entries in A
        A = csr_matrix(np.array([[0.]]))
        C = csr_matrix(np.array([[1.]]))
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[3.0]])
        assert_array_almost_equal(A_known, A_filter)

        # 1x2
        A = csr_matrix(np.array([[1.2, 1.]]))
        C = csr_matrix(np.array([[1., 1.]]))
        B = np.array([[0.5], [0.5]])
        Bf = np.array([[1.5]])
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[1.6, 1.4]])
        assert_array_almost_equal(A_known, A_filter)
        # 1x2, but sparser
        C = csr_matrix(np.array([[0., 1.]]))
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[0., 3.]])
        assert_array_almost_equal(A_known, A_filter)
        # 1x2, but with no entries
        C = csr_matrix(np.array([[0., 0.]]))
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[0., 0.]])
        assert_array_almost_equal(A_known, A_filter)

        # 2x1
        A = csr_matrix(np.array([[1.2], [1.]]))
        C = csr_matrix(np.array([[1.], [1.]]))
        B = np.array([[0.5]])
        Bf = np.array([[1.5], [0.4]])
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[3.], [0.8]])
        assert_array_almost_equal(A_known, A_filter)
        # 2x1, but sparser
        C = csr_matrix(np.array([[0.], [1.]]))
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[0.], [.8]])
        assert_array_almost_equal(A_known, A_filter)
        # 2x1, but with no entries
        C = csr_matrix(np.array([[0.], [0.]]))
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[0.], [0.]])
        assert_array_almost_equal(A_known, A_filter)

        # 2x2
        A = csr_matrix(np.array([[1.2, 1.1], [1., 0.5]]))
        C = csr_matrix(np.array([[1.2, 1.1], [1., 0.]]))
        B = np.array([[0.5, 1.0], [0.5, 1.1]])
        Bf = np.array([[0.5, 1.0], [0.5, 1.1]])
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[1., 0.], [1.08, 0.]])
        assert_array_almost_equal(A_known, A_filter)
        # 1x2, but sparser
        C = csr_matrix(np.array([[0., 0.], [1., 0.]]))
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[0., 0.], [1.08, 0.]])
        assert_array_almost_equal(A_known, A_filter)
        # Try block structure
        A = A.tobsr((2, 2))
        C = C.tobsr((2, 2))
        A_filter = filter_operator(A, C, B, Bf).toarray()
        A_known = np.array([[1., 0.], [0., 1.]])
        assert_array_almost_equal(A_known, A_filter)

        # Basic tests, with easy to compute answers
        # test one, the constant
        A = np.array([[1., 1, 1],
                      [1, 1, 1],
                      [0, 1, 0],
                      [0, 1, 0],
                      [0, 0, 1],
                      [0, 0, 1]])
        C = np.array([[1., 1, 0],
                      [1, 1, 0],
                      [0, 1, 0],
                      [0, 1, 0],
                      [0, 0, 1],
                      [0, 0, 1]])
        B = np.ones((3, 1))
        Bf = np.ones((6, 1))
        A_filter = filter_operator(csr_matrix(A), csr_matrix(C), B, Bf)
        A_filter = A_filter.toarray()
        A_known = np.array([[0.5, 0.5, 0.],
                            [0.5, 0.5, 0.],
                            [0., 1., 0.],
                            [0., 1., 0.],
                            [0., 0., 1.],
                            [0., 0., 1.]])
        assert_array_almost_equal(A_known, A_filter)
        # test two, the constant and linears
        B = np.hstack((B, np.arange(B.shape[0]).reshape(-1, 1)))
        Bf = np.hstack((Bf, np.arange(Bf.shape[0]).reshape(-1, 1)))
        A_filter = filter_operator(csr_matrix(A), csr_matrix(C), B, Bf)
        A_filter = A_filter.toarray()
        A_known = np.array([[1., 0., 0.],
                            [0., 1., 0.],
                            [0., 1.5, 0.],
                            [0., 2., 0.],
                            [0., 0., 1.8],
                            [0., 0., 2.2]])
        assert_array_almost_equal(A_known, A_filter)

        # Run two tests based on the Laplacian
        # first test, constants
        from pyamg.gallery import poisson
        A = poisson((10, 10), format='csr')
        C = A.copy()
        C.data[np.arange(0, C.nnz, 5)] = 0.0
        C.eliminate_zeros()
        B = np.ones((A.shape[0], 1))
        Bf = np.ones((A.shape[0], 1))
        A_filter = filter_operator(A, C, B, Bf)
        assert_array_almost_equal(A_filter*B, Bf)
        # second test, constants and linears
        B = np.hstack((B, np.arange(B.shape[0]).reshape(-1, 1)))
        Bf = np.hstack((Bf, np.arange(Bf.shape[0]).reshape(-1, 1)))
        A_filter = filter_operator(A, C, B, Bf)
        assert_array_almost_equal(A_filter*B, Bf)

    def test_scale_T(self):
        from scipy.sparse import bsr_matrix

        # Trivially sized tests
        # 1x1
        T = np.array([[1.1]])
        P_I = np.array([[1.0]])
        I_F = np.array([[0.0]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        T_answer = np.array([[1.0]])
        assert_array_almost_equal(T_answer, T_scaled)

        T = np.array([[1.1]])
        P_I = np.array([[0.0]])
        I_F = np.array([[1.0]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        T_answer = np.array([[1.1]])
        assert_array_almost_equal(T_answer, T_scaled)

        T = np.array([[0.0]])
        P_I = np.array([[0.0]])
        I_F = np.array([[1.0]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        T_answer = np.array([[0.]])
        assert_array_almost_equal(T_answer, T_scaled)

        # 2x1
        T = np.array([[1.5], [1.2]])
        P_I = np.array([[1.], [0.]])
        I_F = np.array([[0., 0.], [0., 1.]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        T_answer = np.array([[1.], [0.8]])
        assert_array_almost_equal(T_answer, T_scaled)

        T = np.array([[0.], [1.2]])
        P_I = np.array([[1.], [0.]])
        I_F = np.array([[0., 0.], [0., 1.]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        T_answer = np.array([[1.], [0.]])
        assert_array_almost_equal(T_answer, T_scaled)

        T = np.array([[0.], [0.]])
        P_I = np.array([[1.], [0.]])
        I_F = np.array([[0., 0.], [0., 1.]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        T_answer = np.array([[1.], [0.]])
        assert_array_almost_equal(T_answer, T_scaled)

        T = np.array([[0.], [0.]])
        P_I = np.array([[0.], [0.]])
        I_F = np.array([[1., 0.], [0., 1.]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        T_answer = np.array([[0.], [0.]])
        assert_array_almost_equal(T_answer, T_scaled)

        # 2x2
        T = np.array([[2., 0.], [1., 1.]])
        P_I = np.array([[1., 0.], [0., 1.]])
        I_F = np.array([[0., 0.], [0., 0.]])
        T_scaled = scale_T(bsr_matrix(T, blocksize=(1, 1)),
                           bsr_matrix(P_I, blocksize=(1, 1)),
                           bsr_matrix(I_F, blocksize=(1, 1))).toarray()
        T_answer = np.array([[1., 0.], [0., 1.]])
        assert_array_almost_equal(T_answer, T_scaled)

        T = np.array([[2., 0.], [1., 1.]])
        P_I = np.array([[1., 0.], [0., 1.]])
        I_F = np.array([[0., 0.], [0., 0.]])
        T_scaled = scale_T(bsr_matrix(T, blocksize=(2, 2)),
                           bsr_matrix(P_I, blocksize=(2, 2)),
                           bsr_matrix(I_F, blocksize=(2, 2))).toarray()
        T_answer = np.array([[1., 0.], [0., 1.]])
        assert_array_almost_equal(T_answer, T_scaled)

        T = np.array([[2., 0.], [1., 1.]])
        P_I = np.array([[0., 0.], [0., 0.]])
        I_F = np.array([[1., 0.], [0., 1.]])
        T_scaled = scale_T(bsr_matrix(T, blocksize=(2, 2)),
                           bsr_matrix(P_I, blocksize=(2, 2)),
                           bsr_matrix(I_F, blocksize=(2, 2))).toarray()
        T_answer = np.array([[2., 0.], [1., 1.]])
        assert_array_almost_equal(T_answer, T_scaled)

        # Test for one CSR and one BSR example
        T = np.array([[1.0, 0., 0.],
                      [0.5, 0., 0.],
                      [0., 1., 0.],
                      [0., 0.5, 0.],
                      [0., 0., 1.],
                      [0., 0., 0.25]])
        P_I = np.array([[0., 0., 0.],
                        [1., 0., 0.],
                        [0., 1., 0.],
                        [0., 0., 0.],
                        [0., 0., 0.],
                        [0., 0., 1.]])
        I_F = np.array([[1., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 1., 0., 0.],
                        [0., 0., 0., 0., 1., 0.],
                        [0., 0., 0., 0., 0., 0.]])
        T_answer = np.array([[2., 0., 0.],
                             [1., 0., 0.],
                             [0., 1., 0.],
                             [0., 0.5, 0.],
                             [0., 0., 4.],
                             [0., 0., 1.]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        assert_array_almost_equal(T_answer, T_scaled)

        # BSR test
        T = np.array([[1.0, 1., 0., 0.],
                      [0.5, 1., 0., 0.],
                      [1., 0., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 2., 1.],
                      [0., 0., 3., 1.],
                      [0., 0., 4., 1.],
                      [0., 0., 2., 0.]])
        P_I = np.array([[0., 0., 0., 0.],
                        [0., 0., 0., 0.],
                        [1., 0., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 1., 0.],
                        [0., 0., 0., 1.],
                        [0., 0., 0., 0.],
                        [0., 0., 0., 0.]])
        I_F = np.array([[1., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 1., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 1., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 1.]])
        T_answer = np.array([[1., 1., 0., 0.],
                             [0.5, 1., 0., 0.],
                             [1., 0., 0., 0.],
                             [0., 1., 0., 0.],
                             [0., 0., 1., 0.],
                             [0., 0., 0., 1.],
                             [0., 0., -1., 2.],
                             [0., 0., -2., 2.]])
        T = bsr_matrix(T, blocksize=(2, 2))
        P_I = bsr_matrix(P_I, blocksize=(2, 2))
        I_F = bsr_matrix(I_F, blocksize=(2, 2))
        T_scaled = scale_T(T, P_I, I_F).toarray()
        assert_array_almost_equal(T_answer, T_scaled)

        # BSR test
        T = np.array([[1.0, 1., 0., 0.],
                      [0.5, 1., 0., 0.],
                      [1., 1., 0., 0.],
                      [1., 1., 0., 0.],
                      [0., 0., 2., 1.],
                      [0., 0., 3., 1.],
                      [0., 0., 4., 1.],
                      [0., 0., 2., 0.]])
        P_I = np.array([[0., 0., 0., 0.],
                        [0., 0., 0., 0.],
                        [1., 0., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 1., 0.],
                        [0., 0., 0., 1.],
                        [0., 0., 0., 0.],
                        [0., 0., 0., 0.]])
        I_F = np.array([[1., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 1., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 1., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 1.]])
        T_answer = np.array([[0.5, 0.5, 0., 0.],
                             [0.375, 0.375, 0., 0.],
                             [1., 0., 0., 0.],
                             [0., 1., 0., 0.],
                             [0., 0., 1., 0.],
                             [0., 0., 0., 1.],
                             [0., 0., -1., 2.],
                             [0., 0., -2., 2.]])
        # Cpts = np.array([1, 2])
        T = bsr_matrix(T, blocksize=(2, 2))
        P_I = bsr_matrix(P_I, blocksize=(2, 2))
        I_F = bsr_matrix(I_F, blocksize=(2, 2))
        T_scaled = scale_T(T, P_I, I_F).toarray()
        assert_array_almost_equal(T_answer, T_scaled)

    def test_get_Cpt_params(self):
        from pyamg.gallery import poisson
        from scipy.sparse import csr_matrix, bsr_matrix

        # Begin with trivially sized tests
        # 1x1
        A = csr_matrix(np.array([[1.2]]))
        Cpts = np.array([0])
        AggOp = csr_matrix(np.array([[1.]]))
        T = AggOp.copy().tobsr()
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix(np.array([[1.]]), blocksize=(1, 1))
        I_F = bsr_matrix(np.array([[0.]]), blocksize=(1, 1))
        P_I = bsr_matrix(np.array([[1.]]), blocksize=(1, 1))
        assert_equal(np.array([0]), params['Cpts'])
        assert_equal(np.array([]), params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

        A = csr_matrix(np.array([[1.2]]))
        Cpts = np.array([])
        AggOp = csr_matrix(np.array([[1.]]))
        T = AggOp.copy().tobsr()
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix(np.array([[0.]]), blocksize=(1, 1))
        I_F = bsr_matrix(np.array([[1.]]), blocksize=(1, 1))
        P_I = bsr_matrix(np.array([[0.]]), blocksize=(1, 1))
        assert_equal(np.array([]), params['Cpts'])
        assert_equal(np.array([0]), params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

        # 2x2
        A = csr_matrix(np.array([[1., 1.], [1., 1.]]))
        Cpts = np.array([0])
        AggOp = csr_matrix(np.array([[1.], [1.]]))
        T = AggOp.copy().tobsr()
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix(np.array([[1., 0.], [0., 0.]]), blocksize=(1, 1))
        I_F = bsr_matrix(np.array([[0., 0.], [0., 1.]]), blocksize=(1, 1))
        P_I = bsr_matrix(np.array([[1.], [0.]]), blocksize=(1, 1))
        assert_equal(np.array([0]), params['Cpts'])
        assert_equal(np.array([1]), params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

        Cpts = np.array([0, 1])
        AggOp = csr_matrix(np.array([[1., 0], [0., 1.]]))
        T = AggOp.copy().tobsr()
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix(np.array([[1., 0.], [0., 1.]]), blocksize=(1, 1))
        I_F = bsr_matrix(np.array([[0., 0.], [0., 0.]]), blocksize=(1, 1))
        P_I = bsr_matrix(np.array([[1., 0.], [0., 1.]]), blocksize=(1, 1))
        assert_equal(np.array([0, 1]), params['Cpts'])
        assert_equal(np.array([]), params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

        Cpts = np.array([])
        AggOp = csr_matrix(np.array([[0.], [0.]]))
        T = AggOp.copy().tobsr()
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix(np.array([[0., 0.], [0., 0.]]), blocksize=(1, 1))
        I_F = bsr_matrix(np.array([[1., 0.], [0., 1.]]), blocksize=(1, 1))
        P_I = bsr_matrix(np.array([[0.], [0.]]), blocksize=(1, 1))
        assert_equal(np.array([]), params['Cpts'])
        assert_equal(np.array([0, 1]), params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

        A = A.tobsr(blocksize=(2, 2))
        Cpts = np.array([0])
        AggOp = csr_matrix(np.array([[1.]]))
        T = bsr_matrix(np.array([[1., 1.], [1., 2.]]), blocksize=(2, 2))
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix(np.array([[1., 0.], [0., 1.]]), blocksize=(2, 2))
        I_F = bsr_matrix(np.array([[0., 0.], [0., 0.]]), blocksize=(2, 2))
        P_I = bsr_matrix(np.array([[1., 0.], [0., 1.]]), blocksize=(2, 2))
        assert_equal(np.array([0, 1]), params['Cpts'])
        assert_equal(np.array([]), params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

        Cpts = np.array([])
        AggOp = csr_matrix(np.array([[1.]]))
        T = bsr_matrix(np.array([[1., 1.], [1., 2.]]), blocksize=(2, 2))
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix(np.array([[0., 0.], [0., 0.]]), blocksize=(2, 2))
        I_F = bsr_matrix(np.array([[1., 0.], [0., 1.]]), blocksize=(2, 2))
        P_I = bsr_matrix(np.array([[0., 0.], [0., 0.]]), blocksize=(2, 2))
        assert_equal(np.array([]), params['Cpts'])
        assert_equal(np.array([0, 1]), params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

        # Begin more "realistic" tests
        A = poisson((10,), format='csr')
        Cpts = np.array([3, 7])
        AggOp = ([[1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [0., 1.]])
        AggOp = csr_matrix(AggOp)
        T = AggOp.copy().tobsr()

        # CSR Test
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix((np.array([[[1.]], [[1.]]]),
                          np.array([3, 7]),
                          np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])),
                         shape=(10, 10))
        I_F = bsr_matrix((np.array([[[1.]], [[1.]], [[1.]], [[1.]],
                                    [[1.]], [[1.]], [[1.]], [[1.]]]),
                          np.array([0, 1, 2, 4, 5, 6, 8, 9]),
                          np.array([0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8])),
                         shape=(10, 10))
        P_I = np.array([[0., 0.],
                        [0., 0.],
                        [0., 0.],
                        [1., 0.],
                        [0., 0.],
                        [0., 0.],
                        [0., 0.],
                        [0., 1.],
                        [0., 0.],
                        [0., 0.]])
        P_I = bsr_matrix(P_I, blocksize=(1, 1))
        Fpts = np.array([0, 1, 2, 4, 5, 6, 8, 9])
        assert_equal(Cpts, params['Cpts'])
        assert_equal(Fpts, params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

        # BSR Test
        A = A.tobsr(blocksize=(2, 2))
        Cpts = np.array([1, 3])
        AggOp = ([[1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [0., 1.],
                  [0., 1.]])
        AggOp = csr_matrix(AggOp)
        T = np.hstack((T.toarray(), T.toarray()))[:, [0, 2, 1, 3]]
        T = bsr_matrix(T, blocksize=(2, 2))
        params = get_Cpt_params(A, Cpts, AggOp, T)
        I_C = bsr_matrix((np.array([[[1., 0.], [0., 1.]],
                                    [[1., 0.], [0., 1.]]]),
                          np.array([1, 3]),
                          np.array([0, 0, 1, 1, 2, 2])),
                         shape=(10, 10))
        I_F = bsr_matrix((np.array([[[1., 0.], [0., 1.]],
                                    [[1., 0.], [0., 1.]],
                                    [[1., 0.], [0., 1.]]]),
                          np.array([0, 2, 4]),
                          np.array([0, 1, 1, 2, 2, 3])),
                         shape=(10, 10))
        P_I = np.array([[0., 0., 0., 0.],
                        [0., 0., 0., 0.],
                        [1., 0., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 0.],
                        [0., 0., 0., 0.],
                        [0., 0., 1., 0.],
                        [0., 0., 0., 1.],
                        [0., 0., 0., 0.],
                        [0., 0., 0., 0.]])
        P_I = bsr_matrix(P_I, blocksize=(2, 2))
        Fpts = np.array([0, 1, 4, 5, 8, 9])
        Cpts = np.array([2, 3, 6, 7])
        assert_equal(Cpts, params['Cpts'])
        assert_equal(Fpts, params['Fpts'])
        assert_equal(I_C.indptr, params['I_C'].indptr)
        assert_equal(I_C.indices, params['I_C'].indices)
        assert_equal(I_C.data, params['I_C'].data)
        assert_equal(I_F.indptr, params['I_F'].indptr)
        assert_equal(I_F.indices, params['I_F'].indices)
        assert_equal(I_F.data, params['I_F'].data)
        assert_equal(P_I.indptr, params['P_I'].indptr)
        assert_equal(P_I.indices, params['P_I'].indices)
        assert_equal(P_I.data, params['P_I'].data)

    def test_compute_BtBinv(self):
        # Trivially sized tests
        # 1x1x1
        T = np.array([[1.]])
        T = bsr_matrix(T, blocksize=(1, 1))
        B = np.array([[1.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[1.]]])
        assert_array_almost_equal(BtBinv, answer)

        T = np.array([[1.]])
        T = bsr_matrix(T, blocksize=(1, 1))
        B = np.array([[0.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[0.]]])
        assert_array_almost_equal(BtBinv, answer)

        T = np.array([[1.]])
        T = bsr_matrix(T, blocksize=(1, 1))
        B = np.array([[0.5]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[4.]]])
        assert_array_almost_equal(BtBinv, answer)

        # 2x1x1
        T = np.array([[1., 0.], [1., 1.]])
        T = bsr_matrix(T, blocksize=(1, 1))
        B = np.array([[1.], [1.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[1.]], [[0.5]]])
        assert_array_almost_equal(BtBinv, answer)

        T = np.array([[1., 0.], [1., 1.]])
        T = bsr_matrix(T, blocksize=(1, 1))
        B = np.array([[0.], [1.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[0.]], [[1.]]])
        assert_array_almost_equal(BtBinv, answer)

        T = np.array([[1., 0.], [1., 1.]])
        T = bsr_matrix(T, blocksize=(2, 2))
        B = np.array([[0.], [2.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[0.25]]])
        assert_array_almost_equal(BtBinv, answer)

        T = np.array([[1., 0.], [1., 0.],
                      [0., .5], [0., .25]])
        T = bsr_matrix(T, blocksize=(1, 1))
        B = np.array([[1.], [2.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[1.]], [[1.]],
                           [[0.25]], [[0.25]]])
        assert_array_almost_equal(BtBinv, answer)

        T = np.array([[1., 0.], [0., .25]])
        T = bsr_matrix(T, blocksize=(1, 1))
        B = np.array([[1., 1.], [2., 1.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[0.25, 0.25], [0.25, 0.25]],
                           [[0.16, 0.08], [0.08, 0.04]]])
        assert_array_almost_equal(BtBinv, answer)

        T = np.array([[1., 0.], [0., .25]])
        T = bsr_matrix(T, blocksize=(2, 2))
        B = np.array([[1., 1.], [1., 1.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[0.125, 0.125],
                            [0.125, 0.125]]])
        assert_array_almost_equal(BtBinv, answer)

        # Simple BSR test
        T = np.array([[1., 1., 0., 0.],
                      [1., 1., 0., 0.],
                      [0., 0., 0.5, 0.5],
                      [0., 0., 0.25, 0.25]])
        T = bsr_matrix(T, blocksize=(2, 2))
        B = np.array([[1., 1.], [1., 2.], [1., 1.], [1., 3.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[5., -3.], [-3., 2.]],
                           [[2.5, -1.], [-1., 0.5]]])
        assert_array_almost_equal(BtBinv, answer)

    def test_eliminate_diag_dom_nodes(self):
        # Simple CSR test
        from pyamg.gallery import poisson
        A = poisson((4,), format='csr')
        C = eliminate_diag_dom_nodes(A, A.copy(), 1.1)
        answer = np.array([[1., 0., 0., 0.],
                           [0., 2., -1., 0.],
                           [0., -1., 2., 0.],
                           [0., 0., 0., 1.]])
        assert_array_almost_equal(C.toarray(), answer)

        # Simple BSR test
        from pyamg.gallery import poisson
        A = poisson((6,), format='csr')
        A.data[3] = 5.0
        A = A.tobsr((2, 2))
        C = poisson((3,), format='csr')
        C = eliminate_diag_dom_nodes(A, C, 1.1)
        answer = np.array([[1., 0., 0.],
                           [0., 2., -1.],
                           [0., -1., 2.]])
        assert_array_almost_equal(C.toarray(), answer)

    def test_remove_diagonal(self):
        from pyamg.gallery import poisson
        from pyamg.util.utils import remove_diagonal
        A = poisson((4,), format='csr')
        C = remove_diagonal(A)
        exact = np.array([[0., -1., 0., 0.],
                          [-1., 0., -1., 0.],
                          [0., -1., 0., -1.],
                          [0., 0., -1., 0.]])
        assert_array_almost_equal(C.toarray(), exact)

    def test_scale_rows_by_largest_entry(self):
        from pyamg.gallery import poisson
        from pyamg.util.utils import scale_rows_by_largest_entry
        A = poisson((4,), format='csr')
        A.data = np.array(A.data, dtype=complex)
        A.data[1] = 8.
        A = scale_rows_by_largest_entry(A)
        exact = np.array([[0.25, 1., 0., 0.],
                          [-0.5, 1., -0.5, 0.],
                          [0., -0.5, 1., -0.5],
                          [0., 0., -0.5, 1.]])
        assert_array_almost_equal(A.toarray(), exact)

    def test_filter_matrix_rows(self):
        from pyamg.util.utils import filter_matrix_rows
        A = csr_matrix(np.array([[0.24, -0.5, 0., 0.],
                                 [1., 1., 0.49, 0.],
                                 [0., -0.5, 1., -0.5]]))

        A2 = filter_matrix_rows(A, 0.5)
        exact = np.array([[0.0, -0.5, 0., 0.],
                          [1., 1., 0., 0.],
                          [0., -0.5, 1., -0.5]])
        assert_array_almost_equal(A2.toarray(), exact)

        A2 = A.copy()
        filter_matrix_rows(A2, 0.5, diagonal=True)
        exact = np.array([[0.24, -0.5, 0., 0.],
                          [1., 1., 0.0, 0.],
                          [0., -0.5, 1., -0.5]])
        assert_array_almost_equal(A2.toarray(), exact)

        A2 = A.copy()
        filter_matrix_rows(A2, 0.5, diagonal=True, lump=True)
        exact = np.array([[0.24, -0.5, 0., 0.],
                          [1., 1.49, 0.0, 0.],
                          [0., -0.5, 1., -0.5]])
        assert_array_almost_equal(A2.toarray(), exact)

    def test_filter_matrix_columns(self):
        from pyamg.util.utils import filter_matrix_columns
        A = csr_matrix(np.array([[0.24, 1., 0.],
                                 [-0.5, 1., -0.5],
                                 [0., 0.49, 1.],
                                 [0., 0., -0.5]]))
        A = filter_matrix_columns(A, 0.5)
        exact = np.array([[0., 1., 0.],
                          [-0.5, 1., -0.5],
                          [0., 0., 1.],
                          [0., 0., -0.5]])
        assert_array_almost_equal(A.toarray(), exact)

    def test_truncate_rows(self):
        from pyamg.util.utils import truncate_rows
        A = csr_matrix(np.array([[-0.24, -0.5, 0., 0.],
                                 [1., -1.1, 0.49, 0.1],
                                 [0., 0.4, 1., 0.5]]))
        Acopy = A.copy()
        Acopy = truncate_rows(Acopy, 4)
        assert_array_almost_equal(A.toarray(), Acopy.toarray())

        Acopy = A.copy()
        Acopy = truncate_rows(Acopy, 3)
        exact = np.array([[-0.24, -0.5, 0., 0.],
                          [1., -1.1, 0.49, 0.],
                          [0., 0.4, 1., 0.5]])
        assert_array_almost_equal(Acopy.toarray(), exact)

        Acopy = A.copy()
        Acopy = truncate_rows(Acopy, 2)
        exact = np.array([[-0.24, -0.5, 0., 0.],
                          [1., -1.1, 0., 0.],
                          [0., 0., 1., 0.5]])
        assert_array_almost_equal(Acopy.toarray(), exact)

        Acopy = A.copy()
        Acopy = truncate_rows(Acopy, 1)
        exact = np.array([[0., -0.5, 0., 0.],
                          [0., -1.1, 0., 0.],
                          [0., 0., 1., 0.]])
        assert_array_almost_equal(Acopy.toarray(), exact)

        Acopy = A.copy()
        Acopy = truncate_rows(Acopy, 0)
        exact = np.array([[0., 0., 0., 0.],
                          [0., 0., 0., 0.],
                          [0., 0., 0., 0.]])
        assert_array_almost_equal(Acopy.toarray(), exact)

    def test_scale_block_inverse(self):
        from pyamg.gallery import poisson
        from pyamg.util.utils import scale_block_inverse
        A = poisson((4,), format='csr')
        A, Dinv = scale_block_inverse(A, 2)
        A_stored = np.array([[1.,  0.,     -1./3.,  0.],
                             [0.,  1.,     -2./3.,  0.],
                             [0., -2./3.,  1.,      0.],
                             [0., -1./3.,  0.,      1.]])
        Dinv_stored = np.array([[2./3.,  1./3.,  0.,     0.],
                                [1./3.,  2./3.,  0.,     0.],
                                [0.,     0.,     2./3.,  1./3.],
                                [0.,     0.,     1./3.,  2./3.]])
        assert_array_almost_equal(A.toarray(), A_stored)
        assert_array_almost_equal(Dinv.toarray(), Dinv_stored)


class TestComplexUtils(TestCase):
    def test_diag_sparse(self):
        # check sparse -> array
        A = np.array([[-4-4.0j]])
        assert_equal(diag_sparse(csr_matrix(A)), [-4-4.0j])

        A = np.array([[1, 0, -5], [-2, 5-2.0j, 0]])
        assert_equal(diag_sparse(csr_matrix(A)), [1, 5-2.0j])

        # check array -> sparse
        A = np.array([[-4+1.0j]])
        assert_equal(diag_sparse(np.array([-4+1.0j])).toarray(),
                     csr_matrix(A).toarray())

        A = np.array([[1, 0], [0, 5-2.0j]])
        assert_equal(diag_sparse(np.array([1, 5-2.0j])).toarray(),
                     csr_matrix(A).toarray())

    def test_symmetric_rescaling(self):
        cases = []
        A = np.array([[5.5+1.0j, 3.5, 4.8],
                      [2., 9.9, 0.5-2.0j],
                      [6.5, 2.6, 5.7+1.0j]])
        A = csr_matrix(A)
        cases.append(A)
        P = diag_sparse([1, 0, 1.0j])
        cases.append(P*A*P)
        P = diag_sparse([0, 1+1.0j, 0])
        cases.append(P*A*P)

        for A in cases:
            D_sqrt, D_sqrt_inv, DAD = symmetric_rescaling(A)
            assert_almost_equal(diag_sparse(A) != 0, np.real(diag_sparse(DAD)))
            assert_almost_equal(diag_sparse(DAD), D_sqrt*D_sqrt_inv)

            D_sqrt, D_sqrt_inv = diag_sparse(D_sqrt), diag_sparse(D_sqrt_inv)
            assert_almost_equal((D_sqrt_inv*A*D_sqrt_inv).toarray(),
                                DAD.toarray())

    def test_symmetric_rescaling_sa(self):
        cases = []
        # case 1
        e = 1.0j*np.ones((5, 1)).ravel()
        data = [-1*e, 2*e, -1*e]
        A = 1.0j*spdiags(data, [-1, 0, 1], 5, 5).tocsr()
        B = e.copy().reshape(-1, 1)
        DAD_answer = np.array([[1., -0.5, 0., 0., 0.],
                               [-0.5, 1., -0.5, 0., 0.],
                               [0., -0.5, 1., -0.5, 0.],
                               [0., 0., -0.5, 1., -0.5],
                               [0., 0., 0., -0.5, 1.]])
        DB_answer = np.sqrt(2)*1.0j*e.reshape(-1, 1)
        #           matrix   B    BH   expected matrix  expected B  expected BH
        cases.append((A, B, None, DAD_answer, DB_answer, None))

        for case in cases:
            [A, B, BH, DAD_answer, DB_answer, DBH_answer] = case

            [DAD, DB, DBH] = symmetric_rescaling_sa(A, B, BH=BH)
            assert_array_almost_equal(DAD.toarray(), DAD_answer)
            assert_array_almost_equal(DB, DB_answer)
            if DBH_answer is not None:
                assert_array_almost_equal(DBH, DBH_answer)

    def test_get_diagonal(self):
        cases = []
        for i in range(1, 6):
            A = np.random.rand(i, i)
            Ai = A + 1.0j*np.random.rand(i, i)
            cases.append(csr_matrix(A))
            cases.append(csr_matrix(Ai))

        for A in cases:
            D_A = get_diagonal(A, norm_eq=False, inv=False)
            D_A_inv = get_diagonal(A, norm_eq=False, inv=True)
            D_AA = get_diagonal(A, norm_eq=1, inv=False)
            D_AA_inv = get_diagonal(A, norm_eq=1, inv=True)
            D_AA2 = get_diagonal(A, norm_eq=2, inv=False)
            D_AA_inv2 = get_diagonal(A, norm_eq=2, inv=True)

            D = np.diag(A.toarray())
            assert_almost_equal(D, D_A)
            D = 1.0/D
            assert_almost_equal(D, D_A_inv)

            D = np.diag((A.T.conjugate()*A).toarray())
            assert_almost_equal(D, D_AA)
            D = 1.0/D
            assert_almost_equal(D, D_AA_inv)

            D = np.diag((A*A.T.conjugate()).toarray())
            assert_almost_equal(D, D_AA2)
            D = 1.0/D
            assert_almost_equal(D, D_AA_inv2)

    def test_profile_solver(self):
        from scipy.sparse.linalg import cg
        from pyamg.gallery import poisson
        from pyamg.aggregation import smoothed_aggregation_solver

        A = poisson((100, 100), format='csr')
        A.data = A.data + 1e-5*np.random.rand(A.nnz)
        ml = smoothed_aggregation_solver(A)

        opts = []
        opts.append({})

        nextopt = dict(accel=cg, rtol=1e-10, atol=0)
        opts.append(nextopt)

        for kwargs in opts:
            residuals = profile_solver(ml, **kwargs)
        del residuals

    def test_to_type(self):
        w = 1.2
        x = np.ones((5, 1))
        y = np.random.rand(3, 2)
        z = csr_matrix(np.random.rand(2, 2))
        inlist = [w, x, y, z]

        out = to_type(complex, inlist)
        for i in range(len(out)):
            assert out[i].dtype == complex
            if isspmatrix(out[i]):
                diff = np.ravel(out[i].data - inlist[i].data)
            else:
                diff = out[i] - inlist[i]
            assert_equal(max(np.abs(np.ravel(diff))), 0.0)

    def test_type_prep(self):
        w = 1.2
        x = np.ones((5, 1))
        y = np.random.rand(3, 2)
        z = csr_matrix(np.random.rand(2, 2))
        inlist = [w, x, y, z]

        out = type_prep(complex, inlist)
        for i in range(len(out)):
            assert out[i].dtype == complex
            assert not np.isscalar(out[i])
            if isspmatrix(out[i]):
                diff = np.ravel(out[i].data - inlist[i].data)
            else:
                diff = out[i] - inlist[i]
            assert_equal(max(np.abs(np.ravel(diff))), 0.0)

    def test_filter_operator(self):
        # Basic tests, with easy to compute answers
        # test one, the constant
        A = np.array([[1.+0.j, 1, 1], [1, 1, 1], [0, 1, 0],
                      [0, 1, 0], [0, 0, 1], [0, 0, 1]])
        C = np.array([[1.+0.j, 1, 0], [1, 1, 0], [0, 1, 0],
                      [0, 1, 0], [0, 0, 1], [0, 0, 1]])
        B = np.ones((3, 1)) + 0.j
        Bf = np.ones((6, 1)) + 1.0j * np.ones((6, 1))
        A_filter = filter_operator(csr_matrix(A), csr_matrix(C), B, Bf)
        A_filter = A_filter.toarray()
        A_known = np.array([[0.5+0.5j, 0.5+0.5j, 0.0+0.j],
                            [0.5+0.5j, 0.5+0.5j, 0.0+0.j],
                            [0.0+0.j, 1.0+1.j, 0.0+0.j],
                            [0.0+0.j, 1.0+1.j, 0.0+0.j],
                            [0.0+0.j, 0.0+0.j, 1.0+1.j],
                            [0.0+0.j, 0.0+0.j, 1.0+1.j]])
        assert_array_almost_equal(A_known, A_filter)

        # test two, the constant and linears
        # Note that for the rows with only one nonzero, Bf can't be
        # approximated exactly
        B = np.hstack((B, np.arange(B.shape[0]).reshape(-1, 1)))
        ww = np.arange(Bf.shape[0]).reshape(-1, 1) +\
            1.0j*np.arange(Bf.shape[0]).reshape(-1, 1)
        Bf = np.hstack((Bf, ww))
        A_filter = filter_operator(csr_matrix(A), csr_matrix(C), B, Bf)
        A_filter = A_filter.toarray()
        A_known = np.array([[1.0+1.j, 0.0+0.j, 0.0+0.j],
                            [0.0+0.j, 1.0+1.j, 0.0+0.j],
                            [0.0+0.j, 1.5+1.5j, 0.0+0.j],
                            [0.0+0.j, 2.0+2.j, 0.0+0.j],
                            [0.0+0.j, 0.0+0.j, 1.8+1.8j],
                            [0.0+0.j, 0.0+0.j, 2.2+2.2j]])
        assert_array_almost_equal(A_known, A_filter)

    def test_scale_T(self):
        # Test for one CSR and one BSR example
        T = np.array([[1.0, 0., 0.],
                      [0.5j, 0., 0.],
                      [0., 1., 0.],
                      [0., .5j, 0.],
                      [0., 0., 1.j],
                      [0., 0., 0.25]])
        T_answer = np.array([[0.-2.j, 0.+0.j, 0.+0.j],
                             [1.+0.j, 0.+0.j, 0.+0.j],
                             [0.+0.j, 1.+0.j, 0.+0.j],
                             [0.+0.j, 0.+0.5j, 0.+0.j],
                             [0.+0.j, 0.+0.j, 0.+4.j],
                             [0.+0.j, 0.+0.j, 1.+0.j]])
        P_I = np.array([[0., 0., 0.],
                        [1., 0., 0.],
                        [0., 1., 0.],
                        [0., 0., 0.],
                        [0., 0., 0.],
                        [0., 0., 1.]])
        I_F = np.array([[1., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 1., 0., 0.],
                        [0., 0., 0., 0., 1., 0.],
                        [0., 0., 0., 0., 0., 0.]])
        T_scaled = scale_T(bsr_matrix(T), bsr_matrix(P_I), bsr_matrix(I_F))
        T_scaled = T_scaled.toarray()
        assert_array_almost_equal(T_answer, T_scaled)

        # BSR test
        T = np.array([[1.j, 1., 0., 0.],
                      [0.5, 1., 0., 0.],
                      [1., 0., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 2.j, 0.],
                      [0., 0., 0., 1.],
                      [0., 0., 1., 1.],
                      [0., 0., 1., 1.]])
        P_I = np.array([[0., 0., 0., 0.],
                        [0., 0., 0., 0.],
                        [1., 0., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 1., 0.],
                        [0., 0., 0., 1.],
                        [0., 0., 0., 0.],
                        [0., 0., 0., 0.]])
        I_F = np.array([[1., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 1., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 0.],
                        [0., 0., 0., 0., 0., 0., 1., 0.],
                        [0., 0., 0., 0., 0., 0., 0., 1.]])
        T_answer = np.array([[0.0+1.j, 1.0+0.j, 0.0+0.j, 0.0+0.j],
                             [0.5+0.j, 1.0+0.j, 0.0+0.j, 0.0+0.j],
                             [1.0+0.j, 0.0+0.j, 0.0+0.j, 0.0+0.j],
                             [0.0+0.j, 1.0+0.j, 0.0+0.j, 0.0+0.j],
                             [0.0+0.j, 0.0+0.j, 1.0+0.j, 0.0+0.j],
                             [0.0+0.j, 0.0+0.j, 0.0+0.j, 1.0+0.j],
                             [0.0+0.j, 0.0+0.j, 0.0-0.5j, 1.0+0.j],
                             [0.0+0.j, 0.0+0.j, 0.0-0.5j, 1.0+0.j]])
        T = bsr_matrix(T, blocksize=(2, 2))
        P_I = bsr_matrix(P_I, blocksize=(2, 2))
        I_F = bsr_matrix(I_F, blocksize=(2, 2))
        T_scaled = scale_T(T, P_I, I_F).toarray()
        assert_array_almost_equal(T_answer, T_scaled)

    def test_compute_BtBinv(self):
        # Simple CSR test
        T = np.array([[1.j, 0.], [1., 0.],
                      [0., .5], [0., .25]])
        T = bsr_matrix(T, blocksize=(1, 1))
        B = np.array([[1.+1.j], [2.j]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[0.50+0.j]], [[0.50+0.j]],
                           [[0.25+0.j]], [[0.25+0.j]]])
        assert_array_almost_equal(BtBinv, answer)

        # Simple BSR test
        T = np.array([[1., 0., 0., 1.],
                      [1., 0., 0., 1.],
                      [0., 0., 0.5, 0.],
                      [0., 0., 0.25, 0.]])
        T = bsr_matrix(T, blocksize=(2, 2))
        B = np.array([[1.j, 1.], [1.j, 3.], [1.j, 4.], [1.j, 2.]])
        BtBinv = compute_BtBinv(B, T)
        answer = np.array([[[1.5+0.j, 0.0+0.5j], [0.0-0.5j, 0.2+0.j]],
                           [[5.0+0.j, 0.0+1.5j], [0.0-1.5j, 0.5+0.j]]])
        assert_array_almost_equal(BtBinv, answer)

    def test_eliminate_diag_dom_nodes(self):
        # Simple CSR test
        from pyamg.gallery import poisson
        A = poisson((4,), format='csr')
        A.data = np.array(A.data, dtype=complex)
        A.data[0] = 1+5.0j
        C = eliminate_diag_dom_nodes(A, A.copy(), 1.1)
        answer = np.array([[1., 0., 0., 0.],
                           [0., 2., -1., 0.],
                           [0., -1., 2., 0.],
                           [0., 0., 0., 1.]])
        assert_array_almost_equal(C.toarray(), answer)

        # Simple BSR test
        from pyamg.gallery import poisson
        A = poisson((6,), format='csr')
        A.data = np.array(A.data, dtype=complex)
        A.data[3] = 1.0 + 5.0j
        A = A.tobsr((2, 2))
        C = poisson((3,), format='csr')
        C = eliminate_diag_dom_nodes(A, C, 1.1)
        answer = np.array([[1., 0., 0.],
                           [0., 2., -1.],
                           [0., -1., 2.]])
        assert_array_almost_equal(C.toarray(), answer)

    def test_remove_diagonal(self):
        from pyamg.gallery import poisson
        from pyamg.util.utils import remove_diagonal
        A = poisson((4,), format='csr')
        C = remove_diagonal(1.0j*A)
        exact = np.array([[0., -1., 0., 0.],
                          [-1., 0., -1., 0.],
                          [0., -1., 0., -1.],
                          [0., 0., -1., 0.]])
        assert_array_almost_equal(C.toarray(), 1.0j*exact)

    def test_scale_rows_by_largest_entry(self):
        from pyamg.gallery import poisson
        from pyamg.util.utils import scale_rows_by_largest_entry
        A = poisson((4,), format='csr')
        A.data = np.array(A.data, dtype=complex)
        A.data[1] = 3. + 2.j
        A = scale_rows_by_largest_entry(A)
        exact = np.array([[0.55470020+0.j, 0.83205029+0.5547002j, 0.0, 0.0],
                          [-0.50000000+0.j, 1.00000000+0.j, -0.5+0.j, 0.0+0.j],
                          [0.00000000+0.j, -0.50000000+0.j, 1.0+0.j, -0.5+0.j],
                          [0.00000000+0.j, 0.00000000+0.j, -0.5+0.j, 1.0+0.j]])
        assert_array_almost_equal(A.toarray(), exact)

    def test_scale_block_inverse(self):
        from pyamg.gallery import poisson
        from pyamg.util.utils import scale_block_inverse
        A = poisson((4,), format='csr', dtype=complex)
        A.data = 1.0j*A.data
        A, Dinv = scale_block_inverse(A, 2)
        A_stored = np.array([[1.,  0.,     -1./3.,  0.],
                             [0.,  1.,     -2./3.,  0.],
                             [0., -2./3.,  1.,      0.],
                             [0., -1./3.,  0.,      1.]])
        Dinv_stored = -1.0j*np.array([[2./3.,  1./3.,  0.,     0.],
                                      [1./3.,  2./3.,  0.,     0.],
                                      [0.,     0.,     2./3.,  1./3.],
                                      [0.,     0.,     1./3.,  2./3.]],
                                     dtype=complex)
        assert_array_almost_equal(A.toarray(), A_stored)
        assert_array_almost_equal(Dinv.toarray(), Dinv_stored)

    # note: no explicitly complex tests necessary for get_Cpt_params
    # def test_get_Cpt_params(self):


class TestLevelize(TestCase):

    def test_levelize_smooth_or_improve_candidates(self):
        from pyamg.util.utils import levelize_smooth_or_improve_candidates
        # test 1
        result = levelize_smooth_or_improve_candidates([('jacobi', {})], 5)
        assert_equal(result, [('jacobi', {}) for i in range(5)])
        # test 2
        result = levelize_smooth_or_improve_candidates('jacobi', 5)
        assert_equal(result, ['jacobi' for i in range(5)])
        # test 3
        result = levelize_smooth_or_improve_candidates(('jacobi', {}), 5)
        assert_equal(result, [('jacobi', {}) for i in range(5)])
        # test 4
        result = levelize_smooth_or_improve_candidates([('jacobi', {}), None],
                                                       5)
        assert_equal(result, [('jacobi', {}), None, None, None, None])

    def test_levelize_strength_or_aggregation(self):
        from pyamg.util.utils import levelize_strength_or_aggregation
        from pyamg.gallery import poisson
        A = poisson((100,), format='csr')
        # test 1
        max_levels, max_coarse, result = \
            levelize_strength_or_aggregation([('symmetric', {})], 5, 5)
        assert_equal(result, [('symmetric', {}) for i in range(4)])
        assert_equal(max_levels, 5)
        assert_equal(max_coarse, 5)
        # test 2
        max_levels, max_coarse, result =\
            levelize_strength_or_aggregation('symmetric', 5, 5)
        assert_equal(result, ['symmetric' for i in range(4)])
        assert_equal(max_levels, 5)
        assert_equal(max_coarse, 5)
        # test 3
        max_levels, max_coarse, result =\
            levelize_strength_or_aggregation(('symmetric', {}), 5, 5)
        assert_equal(result, [('symmetric', {}) for i in range(4)])
        assert_equal(max_levels, 5)
        assert_equal(max_coarse, 5)
        # test 4
        max_levels, max_coarse, result =\
            levelize_strength_or_aggregation([('symmetric', {}), None], 5, 5)
        assert_equal(result, [('symmetric', {}), None, None, None])
        assert_equal(max_levels, 5)
        assert_equal(max_coarse, 5)
        # test 5
        max_levels, max_coarse, result =\
            levelize_strength_or_aggregation(('predefined', {'C': A}), 5, 5)
        assert_array_equal(result, [('predefined', {'C': A})])
        assert_equal(max_levels, 2)
        assert_equal(max_coarse, 0)
        # test 6
        max_levels, max_coarse, result =\
            levelize_strength_or_aggregation([('predefined', {'C': A}),
                                              ('predefined', {'C': A})], 5, 5)
        assert_array_equal(result, [('predefined', {'C': A}),
                                    ('predefined', {'C': A})])
        assert_equal(max_levels, 3)
        assert_equal(max_coarse, 0)
        # test 7
        max_levels, max_coarse, result = \
            levelize_strength_or_aggregation(None, 5, 5)
        assert_equal(result, [(None, {}) for i in range(4)])
        assert_equal(max_levels, 5)
        assert_equal(max_coarse, 5)
