
    ^Mh                     ^    d dl Z d dlZd dlmZmZmZ d dlmc m	c m
Z g dZddZd Zd ZdS )	    N)fftshift	ifftshiftfftfreq)r   r   r   rfftfreqnext_fast_len      ?c                     t          j        |           } | dk     rt          d|  d          t          j        d| dz   t
                    dz  t          | |z            z  S )a  DFT sample frequencies (for usage with rfft, irfft).

    The returned float array contains the frequency bins in
    cycles/unit (with zero at the start) given a window length `n` and a
    sample spacing `d`::

      f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n)   if n is even
      f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n)   if n is odd

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing. Default is 1.

    Returns
    -------
    out : ndarray
        The array of length `n`, containing the sample frequencies.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import fftpack
    >>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
    >>> sig_fft = fftpack.rfft(sig)
    >>> n = sig_fft.size
    >>> timestep = 0.1
    >>> freq = fftpack.rfftfreq(n, d=timestep)
    >>> freq
    array([ 0.  ,  1.25,  1.25,  2.5 ,  2.5 ,  3.75,  3.75,  5.  ])

    r   zn = z/ is not valid. n must be a nonnegative integer.   )dtype   )operatorindex
ValueErrornparangeintfloat)nds     U/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/fftpack/_helper.pyr   r      sv    F 	qA1uu < < < < = = 	= IaQc***a/5Q<<??    c                 ,    t          j        | d          S )a  
    Find the next fast size of input data to `fft`, for zero-padding, etc.

    SciPy's FFTPACK has efficient functions for radix {2, 3, 4, 5}, so this
    returns the next composite of the prime factors 2, 3, and 5 which is
    greater than or equal to `target`. (These are also known as 5-smooth
    numbers, regular numbers, or Hamming numbers.)

    Parameters
    ----------
    target : int
        Length to start searching from. Must be a positive integer.

    Returns
    -------
    out : int
        The first 5-smooth number greater than or equal to `target`.

    Notes
    -----
    .. versionadded:: 0.18.0

    Examples
    --------
    On a particular machine, an FFT of prime length takes 133 ms:

    >>> from scipy import fftpack
    >>> import numpy as np
    >>> rng = np.random.default_rng()
    >>> min_len = 10007  # prime length is worst case for speed
    >>> a = rng.standard_normal(min_len)
    >>> b = fftpack.fft(a)

    Zero-padding to the next 5-smooth length reduces computation time to
    211 us, a speedup of 630 times:

    >>> fftpack.next_fast_len(min_len)
    10125
    >>> b = fftpack.fft(a, 10125)

    Rounding up to the next power of 2 is not optimal, taking 367 us to
    compute, 1.7 times as long as the 5-smooth size:

    >>> b = fftpack.fft(a, 16384)

    T)_helper	good_size)targets    r   r   r   6   s    ` VT***r   c                     |K|It          j        |d          }t          |          t          j        |           k    rt          d          |S )zEnsure that shape argument is valid for scipy.fftpack

    scipy.fftpack does not support len(shape) < x.ndim when axes is not given.
    NshapezBwhen given, axes and shape arguments have to be of the same length)r   _iterable_of_intlenr   ndimr   )xr   axess      r   _good_shaper#   i   sU    
 T\(88u::## > ? ? ?Lr   )r   )r   numpyr   	numpy.fftr   r   r   scipy.fft._pocketfft.helperfft
_pocketffthelperr   __all__r   r   r#    r   r   <module>r,      s         2 2 2 2 2 2 2 2 2 2 - - - - - - - - - - - -
K
K
K(@ (@ (@ (@V0+ 0+ 0+f
 
 
 
 
r   