
    ^MhA                         d Z ddlZddlmZmZmZmZmZmZm	Z	m
Z
 ddlmZmZ ddlmZmZ ddlmZ g dZ	 	 ddZddZd ZddZdd
d	dddZd ZdS )zSVD decomposition functions.    N)zerosr_diagdotarccosarcsinwhereclip   )LinAlgError_datacopied)get_lapack_funcs_compute_lwork)_asarray_validated)svdsvdvalsdiagsvdorthsubspace_angles
null_spaceTFgesddc                    t          | |          }t          |j                  dk    rt          d          |j        \  }}|j        dk    rt          t          j        d|j                            \  }	}
}t          j	        |d|
j                  }|rkt          j	        |||f|	j                  }t          j
        |          |d<   t          j	        |||f|j                  }t          j
        |          |d<   n<t          j	        ||df|	j                  }t          j	        |d|f|j                  }|r|||fS |S |pt          ||           }t          |t                    st          d	          |d
vrd| d}t          |          |r||k    r||fn||f\  }}|rA||z  t          j        t          j                  j        k    rt          d| d| d          ndt#          ||z  ||z            }t#          ||z  ||z            t          j        t          j                  j        k    rt          d| d          ||dz   f}t%          ||fd          \  }}t'          ||j        d         |j        d         ||          } ||||||          \  }}}}|dk    rt)          d          |dk     rt          d| z            |r|||fS |S )a  
    Singular Value Decomposition.

    Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and
    a 1-D array ``s`` of singular values (real, non-negative) such that
    ``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with
    main diagonal ``s``.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    full_matrices : bool, optional
        If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``.
        If False, the shapes are ``(M, K)`` and ``(K, N)``, where
        ``K = min(M, N)``.
    compute_uv : bool, optional
        Whether to compute also ``U`` and ``Vh`` in addition to ``s``.
        Default is True.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    lapack_driver : {'gesdd', 'gesvd'}, optional
        Whether to use the more efficient divide-and-conquer approach
        (``'gesdd'``) or general rectangular approach (``'gesvd'``)
        to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach.
        Default is ``'gesdd'``.

    Returns
    -------
    U : ndarray
        Unitary matrix having left singular vectors as columns.
        Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`.
    s : ndarray
        The singular values, sorted in non-increasing order.
        Of shape (K,), with ``K = min(M, N)``.
    Vh : ndarray
        Unitary matrix having right singular vectors as rows.
        Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`.

    For ``compute_uv=False``, only ``s`` is returned.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See Also
    --------
    svdvals : Compute singular values of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> rng = np.random.default_rng()
    >>> m, n = 9, 6
    >>> a = rng.standard_normal((m, n)) + 1.j*rng.standard_normal((m, n))
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape,  s.shape, Vh.shape
    ((9, 9), (6,), (6, 6))

    Reconstruct the original matrix from the decomposition:

    >>> sigma = np.zeros((m, n))
    >>> for i in range(min(m, n)):
    ...     sigma[i, i] = s[i]
    >>> a1 = np.dot(U, np.dot(sigma, Vh))
    >>> np.allclose(a, a1)
    True

    Alternatively, use ``full_matrices=False`` (notice that the shape of
    ``U`` is then ``(m, n)`` instead of ``(m, m)``):

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, s.shape, Vh.shape
    ((9, 6), (6,), (6, 6))
    >>> S = np.diag(s)
    >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> np.allclose(s, s2)
    True

    check_finite   zexpected matrixr   dtype)r   )shaper   .zlapack_driver must be a string)r   gesvdz/lapack_driver must be "gesdd" or "gesvd", not ""zIndexing a matrix size z x zL would incur integer overflow in LAPACK. Try using numpy.linalg.svd instead.zIndexing a matrix of z[ elements would incur an in integer overflow in LAPACK. Try using numpy.linalg.svd instead._lwork	preferred)ilp64r   )
compute_uvfull_matrices)r$   lworkr%   overwrite_azSVD did not convergez0illegal value in %dth argument of internal gesdd)r   lenr   
ValueErrorsizer   npeyer   
empty_likeidentityr   
isinstancestr	TypeErroriinfoint32maxr   r   r   )ar%   r$   r'   r   lapack_drivera1mnu0s0v0suvmessagemax_mnmin_mnszfuncsgesXdgesXd_lworkr&   infos                           X/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/linalg/_decomp_svd.pyr   r      s   z 
AL	9	9	9B
28}}*+++8DAq 
w!||22233
BM"D999 	@bAbh???A[^^AcFbAbh???A[^^AcFFbAbh???AbAbh???A 	a7NH5+b!"4"4KmS)) :8999...TMTTT!!! I#$q55!Qq!f 
	If}rx11555  "H6 "H "Hf "H "H "H I I I 6
 QZV,,B1v:q6z**RXbh-?-?-CCC  "H "H "H "H I I I MH45E *%"kJJJE; ;RXa[&0O O OE E"5(5;P P PMAq!T axx0111axxK 5! " " 	" !Qw    c                 (    t          | d||          S )a  
    Compute singular values of a matrix.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    s : (min(M, N),) ndarray
        The singular values, sorted in decreasing order.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See Also
    --------
    svd : Compute the full singular value decomposition of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import svdvals
    >>> m = np.array([[1.0, 0.0],
    ...               [2.0, 3.0],
    ...               [1.0, 1.0],
    ...               [0.0, 2.0],
    ...               [1.0, 0.0]])
    >>> svdvals(m)
    array([ 4.28091555,  1.63516424])

    We can verify the maximum singular value of `m` by computing the maximum
    length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane.
    We approximate "all" the unit vectors with a large sample. Because
    of linearity, we only need the unit vectors with angles in [0, pi].

    >>> t = np.linspace(0, np.pi, 2000)
    >>> u = np.array([np.cos(t), np.sin(t)])
    >>> np.linalg.norm(m.dot(u), axis=0).max()
    4.2809152422538475

    `p` is a projection matrix with rank 1. With exact arithmetic,
    its singular values would be [1, 0, 0, 0].

    >>> v = np.array([0.1, 0.3, 0.9, 0.3])
    >>> p = np.outer(v, v)
    >>> svdvals(p)
    array([  1.00000000e+00,   2.02021698e-17,   1.56692500e-17,
             8.15115104e-34])

    The singular values of an orthogonal matrix are all 1. Here, we
    create a random orthogonal matrix by using the `rvs()` method of
    `scipy.stats.ortho_group`.

    >>> from scipy.stats import ortho_group
    >>> orth = ortho_group.rvs(4)
    >>> svdvals(orth)
    array([ 1.,  1.,  1.,  1.])

    r   )r$   r'   r   )r   )r5   r'   r   s      rH   r   r      s%    P qQK(* * * *rI   c                 &   t          |           }|j        j        }t          |           }||k    r*t	          j        |t          |||z
  f|          f          S ||k    r#t          |t          ||z
  |f|          f         S t          d          )a  
    Construct the sigma matrix in SVD from singular values and size M, N.

    Parameters
    ----------
    s : (M,) or (N,) array_like
        Singular values
    M : int
        Size of the matrix whose singular values are `s`.
    N : int
        Size of the matrix whose singular values are `s`.

    Returns
    -------
    S : (M, N) ndarray
        The S-matrix in the singular value decomposition

    See Also
    --------
    svd : Singular value decomposition of a matrix
    svdvals : Compute singular values of a matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import diagsvd
    >>> vals = np.array([1, 2, 3])  # The array representing the computed svd
    >>> diagsvd(vals, 3, 4)
    array([[1, 0, 0, 0],
           [0, 2, 0, 0],
           [0, 0, 3, 0]])
    >>> diagsvd(vals, 4, 3)
    array([[1, 0, 0],
           [0, 2, 0],
           [0, 0, 3],
           [0, 0, 0]])

    r   zLength of s must be M or N.)	r   r   charr(   r+   hstackr   r   r)   )r=   MNparttypMorNs         rH   r   r      s    N 77D
*/Cq66Dqyyy$q!a%j < < <=>>>	$q1uaj4444556777rI   c                 R   t          | d          \  }}}|j        d         |j        d         }}|/t          j        |j                  j        t          ||          z  }t          j        |d          |z  }t          j        ||k    t                    }|ddd|f         }	|	S )	a  
    Construct an orthonormal basis for the range of A using SVD

    Parameters
    ----------
    A : (M, N) array_like
        Input array
    rcond : float, optional
        Relative condition number. Singular values ``s`` smaller than
        ``rcond * max(s)`` are considered zero.
        Default: floating point eps * max(M,N).

    Returns
    -------
    Q : (M, K) ndarray
        Orthonormal basis for the range of A.
        K = effective rank of A, as determined by rcond

    See Also
    --------
    svd : Singular value decomposition of a matrix
    null_space : Matrix null space

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import orth
    >>> A = np.array([[2, 0, 0], [0, 5, 0]])  # rank 2 array
    >>> orth(A)
    array([[0., 1.],
           [1., 0.]])
    >>> orth(A.T)
    array([[0., 1.],
           [1., 0.],
           [0., 0.]])

    F)r%   r   r   N        initialr   )
r   r   r+   finfor   epsr4   amaxsumint)
Arcondr>   r=   vhrN   rO   tolnumQs
             rH   r   r   0  s    L 1E***HAq"71:rx{qA}!!%Aq		1
'!R
 
 
 5
(C
&S
$
$
$C	!!!TcT'
AHrI   )r'   r   r6   c                   t          | d|||          \  }}}|j        d         |j        d         }	}|/t          j        |j                  j        t          ||	          z  }t          j        |d          |z  }
t          j        ||
k    t                    }||dddf         j
                                        }|S )	a  
    Construct an orthonormal basis for the null space of A using SVD

    Parameters
    ----------
    A : (M, N) array_like
        Input array
    rcond : float, optional
        Relative condition number. Singular values ``s`` smaller than
        ``rcond * max(s)`` are considered zero.
        Default: floating point eps * max(M,N).
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    lapack_driver : {'gesdd', 'gesvd'}, optional
        Whether to use the more efficient divide-and-conquer approach
        (``'gesdd'``) or general rectangular approach (``'gesvd'``)
        to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach.
        Default is ``'gesdd'``.

    Returns
    -------
    Z : (N, K) ndarray
        Orthonormal basis for the null space of A.
        K = dimension of effective null space, as determined by rcond

    See Also
    --------
    svd : Singular value decomposition of a matrix
    orth : Matrix range

    Examples
    --------
    1-D null space:

    >>> import numpy as np
    >>> from scipy.linalg import null_space
    >>> A = np.array([[1, 1], [1, 1]])
    >>> ns = null_space(A)
    >>> ns * np.copysign(1, ns[0,0])  # Remove the sign ambiguity of the vector
    array([[ 0.70710678],
           [-0.70710678]])

    2-D null space:

    >>> from numpy.random import default_rng
    >>> rng = default_rng()
    >>> B = rng.random((3, 5))
    >>> Z = null_space(B)
    >>> Z.shape
    (5, 2)
    >>> np.allclose(B.dot(Z), 0)
    True

    The basis vectors are orthonormal (up to rounding error):

    >>> Z.T.dot(Z)
    array([[  1.00000000e+00,   6.92087741e-17],
           [  6.92087741e-17,   1.00000000e+00]])

    T)r%   r'   r   r6   r   r   NrT   rU   r   )r   r   r+   rW   r   rX   r4   rY   rZ   r[   Tconj)r\   r]   r'   r   r6   r>   r=   r^   rN   rO   r_   r`   ra   s                rH   r   r   `  s    F 1Dk ,MK K KHAq"71:rx{qA}!!%Aq		1
'!R
 
 
 5
(C
&S
$
$
$C
3446
AHrI   c                    t          | d          } t          | j                  dk    rt          d| j                   t	          |           }~ t          |d          }t          |j                  dk    rt          d|j                   t          |          t          |          k    r+t          d|j        d          d|j        d                    t	          |          }~t          |j                                        |          }t          |          }|j        d         |j        d         k    r|t          ||          z
  }n*|t          ||j                                                  z
  }~~~|dz  d	k    }|	                                r.t          t          t          |d
          dd                    }nd}t          ||t          t          |ddd         dd                              }|S )a  
    Compute the subspace angles between two matrices.

    Parameters
    ----------
    A : (M, N) array_like
        The first input array.
    B : (M, K) array_like
        The second input array.

    Returns
    -------
    angles : ndarray, shape (min(N, K),)
        The subspace angles between the column spaces of `A` and `B` in
        descending order.

    See Also
    --------
    orth
    svd

    Notes
    -----
    This computes the subspace angles according to the formula
    provided in [1]_. For equivalence with MATLAB and Octave behavior,
    use ``angles[0]``.

    .. versionadded:: 1.0

    References
    ----------
    .. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces
           in an A-Based Scalar Product: Algorithms and Perturbation
           Estimates. SIAM J. Sci. Comput. 23:2008-2040.

    Examples
    --------
    An Hadamard matrix, which has orthogonal columns, so we expect that
    the suspace angle to be :math:`\frac{\pi}{2}`:

    >>> import numpy as np
    >>> from scipy.linalg import hadamard, subspace_angles
    >>> rng = np.random.default_rng()
    >>> H = hadamard(4)
    >>> print(H)
    [[ 1  1  1  1]
     [ 1 -1  1 -1]
     [ 1  1 -1 -1]
     [ 1 -1 -1  1]]
    >>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:]))
    array([ 90.,  90.])

    And the subspace angle of a matrix to itself should be zero:

    >>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps
    array([ True,  True], dtype=bool)

    The angles between non-orthogonal subspaces are in between these extremes:

    >>> x = rng.standard_normal((4, 3))
    >>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]]))
    array([ 55.832])  # random
    Tr   r   zexpected 2D array, got shape z/A and B must have the same number of rows, got r   z and r   g      ?)r'   g      g      ?rT   N)r   r(   r   r)   r   r   rc   rd   r   anyr   r
   r	   r   )	r\   BQAQBQA_H_QBsigmamask	mu_arcsinthetas	            rH   r   r     s   F 	14000A
17||qBBBCCC	aB	14000A
17||qBBBCCC
1vvR ;HQK; ;./gaj; ; < < 	<	aB	 "$))++r""GGE 
x{bhqk!!R!!!R))***
B A:Dxxzz 4t < < <c2FFGG			
 $	6$uTTrT{C*D*D#E#EFFELrI   )TTFTr   )FT)N)__doc__numpyr+   r   r   r   r   r   r   r	   r
   _miscr   r   lapackr   r   _decompr   __all__r   r   r   r   r   r    rI   rH   <module>rw      sL   " "     C C C C C C C C C C C C C C C C C C C C , + + + + + + + 4 4 4 4 4 4 4 4 ' ' ' ' ' '
P
P
P =B)0` ` ` `FI* I* I* I*X/8 /8 /8h- - - -`KU$K K K K K\h h h h hrI   