
    _Mh4                     h    d dl Zd dlmZ d dlmZ d dlmZ ddlm	Z	 	 	 dd	Z
d
 Zd Zd Z	 	 ddZdS )    N)lstsq)float_factorial)
convolve1d   )
axis_slice      ?convc                 Z   || k    rt          d          t          | d          \  }}||dk    r|dz
  }n|}d|cxk    r| k     sn t          d          |dvrt          d          ||k    rt          j        |           }|S t          j        | | |z
  t
          	          }	|d
k    r|	ddd         }	t          j        |dz                                 dd          }
|	|
z  }t          j        |dz             }t          |          ||z  z  ||<   t          ||          \  }}}}|S )a	  Compute the coefficients for a 1-D Savitzky-Golay FIR filter.

    Parameters
    ----------
    window_length : int
        The length of the filter window (i.e., the number of coefficients).
    polyorder : int
        The order of the polynomial used to fit the samples.
        `polyorder` must be less than `window_length`.
    deriv : int, optional
        The order of the derivative to compute. This must be a
        nonnegative integer. The default is 0, which means to filter
        the data without differentiating.
    delta : float, optional
        The spacing of the samples to which the filter will be applied.
        This is only used if deriv > 0.
    pos : int or None, optional
        If pos is not None, it specifies evaluation position within the
        window. The default is the middle of the window.
    use : str, optional
        Either 'conv' or 'dot'. This argument chooses the order of the
        coefficients. The default is 'conv', which means that the
        coefficients are ordered to be used in a convolution. With
        use='dot', the order is reversed, so the filter is applied by
        dotting the coefficients with the data set.

    Returns
    -------
    coeffs : 1-D ndarray
        The filter coefficients.

    See Also
    --------
    savgol_filter

    Notes
    -----
    .. versionadded:: 0.14.0

    References
    ----------
    A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by
    Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8),
    pp 1627-1639.
    Jianwen Luo, Kui Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and
    differentiation filter for even number data. Signal Process.
    85, 7 (July 2005), 1429-1434.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal import savgol_coeffs
    >>> savgol_coeffs(5, 2)
    array([-0.08571429,  0.34285714,  0.48571429,  0.34285714, -0.08571429])
    >>> savgol_coeffs(5, 2, deriv=1)
    array([ 2.00000000e-01,  1.00000000e-01,  2.07548111e-16, -1.00000000e-01,
           -2.00000000e-01])

    Note that use='dot' simply reverses the coefficients.

    >>> savgol_coeffs(5, 2, pos=3)
    array([ 0.25714286,  0.37142857,  0.34285714,  0.17142857, -0.14285714])
    >>> savgol_coeffs(5, 2, pos=3, use='dot')
    array([-0.14285714,  0.17142857,  0.34285714,  0.37142857,  0.25714286])
    >>> savgol_coeffs(4, 2, pos=3, deriv=1, use='dot')
    array([0.45,  -0.85,  -0.65,  1.05])

    `x` contains data from the parabola x = t**2, sampled at
    t = -1, 0, 1, 2, 3.  `c` holds the coefficients that will compute the
    derivative at the last position.  When dotted with `x` the result should
    be 6.

    >>> x = np.array([1, 0, 1, 4, 9])
    >>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
    >>> c.dot(x)
    6.0
    z*polyorder must be less than window_length.   Nr   g      ?z4pos must be nonnegative and less than window_length.)r	   dotz`use` must be 'conv' or 'dot')dtyper	   r   )	
ValueErrordivmodnpzerosarangefloatreshaper   r   )window_length	polyorderderivdeltaposusehalflenremcoeffsxorderAy_s                 \/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/signal/_savitzky_golay.pysavgol_coeffsr%      sq   x M!!EFFF-++LGS
{!88C-CCC$$$$}$$$$ * + + 	+ /!!8999y-(( 		3$+5999A
f}}dddGIi!m$$,,R33E	U
A 	QA u%%%8AeH AqkkOFAq!M    c                 z   |dk    r| }nt          |           }||k    rt          j        | dddf                   }n}| d|                                          }t	          |          D ]N}t          j        ||z
  dz
  ||z
  dz
  d          }||                    ||z
  fd| j        dz
  z  z             z  }O|}|S )aH  Differentiate polynomials represented with coefficients.

    p must be a 1-D or 2-D array.  In the 2-D case, each column gives
    the coefficients of a polynomial; the first row holds the coefficients
    associated with the highest power. m must be a nonnegative integer.
    (numpy.polyder doesn't handle the 2-D case.)
    r   Nr   .r   )r   )lenr   
zeros_likecopyranger   r   ndim)pmresultndpkrngs          r$   _polyderr4      s     	AvvFF66]1RaRW:..FF3QB3B1XX B BiA	1q519b99ckk1q5(TQVaZ-@"@AAAFMr&   c
                    t          | |||          }
|dk    s|| j         k    r|
}d}n|
                    |d          }d}|                    |j        d         d          }t          j        t          j        d||z
            ||          }|dk    rt          ||          }t          j        ||z
  ||z
            }t          j	        ||                    dd                    ||z  z  }t          |	j                  }||         |d         c|d<   ||<    |j        ||z
  g|dd         R  }|r|                    d|          }t          |	|||          }||d<   dS )	aE  
    Given an N-d array `x` and the specification of a slice of `x` from
    `window_start` to `window_stop` along `axis`, create an interpolating
    polynomial of each 1-D slice, and evaluate that polynomial in the slice
    from `interp_start` to `interp_stop`. Put the result into the
    corresponding slice of `y`.
    )startstopaxisr   FTr   r   N.)r   r,   swapaxesr   shaper   polyfitr   r4   polyvallist)r   window_startwindow_stopinterp_startinterp_stopr8   r   r   r   r"   x_edgexx_edgeswappedpoly_coeffsivaluesshpy_edges                     r$   	_fit_edgerJ      s    KdKKKFqyyDQVGOO//$**oogmA.33G *RYq+*DEE$i1 1K qyy{E22 		,-{\/IJJAZQYYr1%5%566%5.IF qw--CD	3q6CFCIV^K,6AQRRAAAF *D))KdKKKFF3KKKr&   c                     |dz  }t          | d|d||||||
  
         | j        |         }t          | ||z
  |||z
  ||||||
  
         dS )z
    Use polynomial interpolation of x at the low and high ends of the axis
    to fill in the halflen values in y.

    This function just calls _fit_edge twice, once for each end of the axis.
    r   r   N)rJ   r:   )	r   r   r   r   r   r8   r"   r   r0   s	            r$   _fit_edges_polyfitrL      sz     q GaM1gtq* * *	Aa]"Aq7{Atq* * * * *r&   r   interp        c           	         |dvrt          d          t          j        |           } | j        t          j        k    r4| j        t          j        k    r|                     t          j                  } t          ||||          }|dk    rI|| j        |         k    rt          d          t          | ||d          }	t          | ||||||	           nt          | ||||          }	|	S )	a   Apply a Savitzky-Golay filter to an array.

    This is a 1-D filter. If `x`  has dimension greater than 1, `axis`
    determines the axis along which the filter is applied.

    Parameters
    ----------
    x : array_like
        The data to be filtered. If `x` is not a single or double precision
        floating point array, it will be converted to type ``numpy.float64``
        before filtering.
    window_length : int
        The length of the filter window (i.e., the number of coefficients).
        If `mode` is 'interp', `window_length` must be less than or equal
        to the size of `x`.
    polyorder : int
        The order of the polynomial used to fit the samples.
        `polyorder` must be less than `window_length`.
    deriv : int, optional
        The order of the derivative to compute. This must be a
        nonnegative integer. The default is 0, which means to filter
        the data without differentiating.
    delta : float, optional
        The spacing of the samples to which the filter will be applied.
        This is only used if deriv > 0. Default is 1.0.
    axis : int, optional
        The axis of the array `x` along which the filter is to be applied.
        Default is -1.
    mode : str, optional
        Must be 'mirror', 'constant', 'nearest', 'wrap' or 'interp'. This
        determines the type of extension to use for the padded signal to
        which the filter is applied.  When `mode` is 'constant', the padding
        value is given by `cval`.  See the Notes for more details on 'mirror',
        'constant', 'wrap', and 'nearest'.
        When the 'interp' mode is selected (the default), no extension
        is used.  Instead, a degree `polyorder` polynomial is fit to the
        last `window_length` values of the edges, and this polynomial is
        used to evaluate the last `window_length // 2` output values.
    cval : scalar, optional
        Value to fill past the edges of the input if `mode` is 'constant'.
        Default is 0.0.

    Returns
    -------
    y : ndarray, same shape as `x`
        The filtered data.

    See Also
    --------
    savgol_coeffs

    Notes
    -----
    Details on the `mode` options:

        'mirror':
            Repeats the values at the edges in reverse order. The value
            closest to the edge is not included.
        'nearest':
            The extension contains the nearest input value.
        'constant':
            The extension contains the value given by the `cval` argument.
        'wrap':
            The extension contains the values from the other end of the array.

    For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and
    `window_length` is 7, the following shows the extended data for
    the various `mode` options (assuming `cval` is 0)::

        mode       |   Ext   |         Input          |   Ext
        -----------+---------+------------------------+---------
        'mirror'   | 4  3  2 | 1  2  3  4  5  6  7  8 | 7  6  5
        'nearest'  | 1  1  1 | 1  2  3  4  5  6  7  8 | 8  8  8
        'constant' | 0  0  0 | 1  2  3  4  5  6  7  8 | 0  0  0
        'wrap'     | 6  7  8 | 1  2  3  4  5  6  7  8 | 1  2  3

    .. versionadded:: 0.14.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.signal import savgol_filter
    >>> np.set_printoptions(precision=2)  # For compact display.
    >>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])

    Filter with a window length of 5 and a degree 2 polynomial.  Use
    the defaults for all other parameters.

    >>> savgol_filter(x, 5, 2)
    array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1.  , 4.  , 9.  ])

    Note that the last five values in x are samples of a parabola, so
    when mode='interp' (the default) is used with polyorder=2, the last
    three values are unchanged. Compare that to, for example,
    `mode='nearest'`:

    >>> savgol_filter(x, 5, 2, mode='nearest')
    array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1.  , 4.6 , 7.97])

    )mirrorconstantnearestrM   wrapz@mode must be 'mirror', 'constant', 'nearest' 'wrap' or 'interp'.)r   r   rM   zOIf mode is 'interp', window_length must be less than or equal to the size of x.rQ   )r8   mode)r8   rT   cval)r   r   asarrayr   float64float32astyper%   r:   r   rL   )
r   r   r   r   r   r8   rT   rU   r   r"   s
             r$   savgol_filterrZ      s   L FFF / 0 0 	0 	
1Aw"*BJ!6!6HHRZ  =)5NNNFx174=(( ? @ @ @ q&t*===1mYudANNNN q&t$TBBBHr&   )r   r   Nr	   )r   r   r   rM   rN   )numpyr   scipy.linalgr   scipy._lib._utilr   scipy.ndimager   _arraytoolsr   r%   r4   rJ   rL   rZ    r&   r$   <module>ra      s              , , , , , , $ $ $ $ $ $ # # # # # # EIH H H HV  0) ) )X* * * ?B/2     r&   