
    _Mh                         d Z ddlT ddlT ddlT ddlT ddlT ddlT ddlT ddlT ddl	T ddl
mZmZmZmZmZ d  e            D             ZddlmZ  ee          Z[dS )a  
Sparse linear algebra (:mod:`scipy.sparse.linalg`)
==================================================

.. currentmodule:: scipy.sparse.linalg

Abstract linear operators
-------------------------

.. autosummary::
   :toctree: generated/

   LinearOperator -- abstract representation of a linear operator
   aslinearoperator -- convert an object to an abstract linear operator

Matrix Operations
-----------------

.. autosummary::
   :toctree: generated/

   inv -- compute the sparse matrix inverse
   expm -- compute the sparse matrix exponential
   expm_multiply -- compute the product of a matrix exponential and a matrix
   matrix_power -- compute the matrix power by raising a matrix to an exponent

Matrix norms
------------

.. autosummary::
   :toctree: generated/

   norm -- Norm of a sparse matrix
   onenormest -- Estimate the 1-norm of a sparse matrix

Solving linear problems
-----------------------

Direct methods for linear equation systems:

.. autosummary::
   :toctree: generated/

   spsolve -- Solve the sparse linear system Ax=b
   spsolve_triangular -- Solve sparse linear system Ax=b for a triangular A.
   is_sptriangular -- Check if sparse A is triangular.
   spbandwidth -- Find the bandwidth of a sparse matrix.
   factorized -- Pre-factorize matrix to a function solving a linear system
   MatrixRankWarning -- Warning on exactly singular matrices
   use_solver -- Select direct solver to use

Iterative methods for linear equation systems:

.. autosummary::
   :toctree: generated/

   bicg -- Use BIConjugate Gradient iteration to solve Ax = b
   bicgstab -- Use BIConjugate Gradient STABilized iteration to solve Ax = b
   cg -- Use Conjugate Gradient iteration to solve Ax = b
   cgs -- Use Conjugate Gradient Squared iteration to solve Ax = b
   gmres -- Use Generalized Minimal RESidual iteration to solve Ax = b
   lgmres -- Solve a matrix equation using the LGMRES algorithm
   minres -- Use MINimum RESidual iteration to solve Ax = b
   qmr -- Use Quasi-Minimal Residual iteration to solve Ax = b
   gcrotmk -- Solve a matrix equation using the GCROT(m,k) algorithm
   tfqmr -- Use Transpose-Free Quasi-Minimal Residual iteration to solve Ax = b

Iterative methods for least-squares problems:

.. autosummary::
   :toctree: generated/

   lsqr -- Find the least-squares solution to a sparse linear equation system
   lsmr -- Find the least-squares solution to a sparse linear equation system

Matrix factorizations
---------------------

Eigenvalue problems:

.. autosummary::
   :toctree: generated/

   eigs -- Find k eigenvalues and eigenvectors of the square matrix A
   eigsh -- Find k eigenvalues and eigenvectors of a symmetric matrix
   lobpcg -- Solve symmetric partial eigenproblems with optional preconditioning

Singular values problems:

.. autosummary::
   :toctree: generated/

   svds -- Compute k singular values/vectors for a sparse matrix

The `svds` function supports the following solvers:

.. toctree::

    sparse.linalg.svds-arpack
    sparse.linalg.svds-lobpcg
    sparse.linalg.svds-propack

Complete or incomplete LU factorizations

.. autosummary::
   :toctree: generated/

   splu -- Compute a LU decomposition for a sparse matrix
   spilu -- Compute an incomplete LU decomposition for a sparse matrix
   SuperLU -- Object representing an LU factorization

Sparse arrays with structure
----------------------------

.. autosummary::
   :toctree: generated/

   LaplacianNd -- Laplacian on a uniform rectangular grid in ``N`` dimensions

Exceptions
----------

.. autosummary::
   :toctree: generated/

   ArpackNoConvergence
   ArpackError

   )*)isolvedsolve	interfaceeigenmatfuncsc                 <    g | ]}|                     d           |S )_)
startswith).0ss     \/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/sparse/linalg/__init__.py
<listcomp>r      s)    
5
5
51<<#4#4
51
5
5
5        )PytestTesterN)__doc___isolve_dsolve
_interface_eigen	_matfuncs_onenormest_norm_expm_multiply_special_sparse_arrays r   r   r   r   r   dir__all__scipy._lib._testutilsr   __name__test r   r   <module>r$      s   @ @D                                 % % % % 9 8 8 8 8 8 8 8 8 8 8 8 8 8
5
5ccee
5
5
5 . . . . . .|HLLr   