
    ^Mh                     *    d Z ddlZddlmZ dgZd ZdS )zVSome more special functions which may be useful for multivariate statistical
analysis.    N)gammalnmultigammalnc                     t          j                    t          j        |          rt          j        |          |k    rt	          d          t          j         d|dz
  z  k              rt	          d ddd|dz
  z  dd          ||dz
  z  dz  t          j        t           j                  z  }|t          j        t           fd	t          d|dz             D                       d
          z  }|S )a  Returns the log of multivariate gamma, also sometimes called the
    generalized gamma.

    Parameters
    ----------
    a : ndarray
        The multivariate gamma is computed for each item of `a`.
    d : int
        The dimension of the space of integration.

    Returns
    -------
    res : ndarray
        The values of the log multivariate gamma at the given points `a`.

    Notes
    -----
    The formal definition of the multivariate gamma of dimension d for a real
    `a` is

    .. math::

        \Gamma_d(a) = \int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA

    with the condition :math:`a > (d-1)/2`, and :math:`A > 0` being the set of
    all the positive definite matrices of dimension `d`.  Note that `a` is a
    scalar: the integrand only is multivariate, the argument is not (the
    function is defined over a subset of the real set).

    This can be proven to be equal to the much friendlier equation

    .. math::

        \Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i-1)/2).

    References
    ----------
    R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in
    probability and mathematical statistics).

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.special import multigammaln, gammaln
    >>> a = 23.5
    >>> d = 10
    >>> multigammaln(a, d)
    454.1488605074416

    Verify that the result agrees with the logarithm of the equation
    shown above:

    >>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()
    454.1488605074416
    z*d should be a positive integer (dimension)g      ?   zcondition a (fz) > 0.5 * (d-1) (z	) not metg      ?c                 &    g | ]}|d z
  dz  z
  S )g      ?    ).0jas     Z/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/special/_spfun_stats.py
<listcomp>z multigammaln.<locals>.<listcomp>i   s%    BBBq1Bz>BBB    r   )axis)npasarrayisscalarfloor
ValueErroranylogpisumloggamrange)r   dress   `  r   r   r   *   s    p 	
1A;q>> GbhqkkQ..EFFF	va3!a%= !! YWWWWsac{WWWWXXX!9trvbe}}
,C26&BBBBE!QqSMMBBBCC!LLLLCJr   )__doc__numpyr   scipy.specialr   r   __all__r   r
   r   r   <module>r#      sX   @      + + + + + + 
@ @ @ @ @r   