
    1-Ph                        d Z ddlZddlZddlmZ ddlmZmZ ddl	m
Z
 ddlmZ ddlZ ej        e          Z ej        e          Z	 ddlmZ n# e$ r d8d
ZY nw xY wd Zd Z e            \  ZZd Zd Zd Zd9dZd Zd:dZd Z d Z!d Z"d Z#d Z$d Z%d Z&d Z'd Z(d Z)d Z*d Z+d  Z,d! Z-d" Z.d# Z/d$ Z0d% Z1d& Z2d' Z3d( Z4d) Z5e5Z6d* Z7d+ Z8d, Z9d- Z:d. Z;d/ Z<d0 Z=d1 Z>d2 Z?d3 Z@d4 ZAd5 ZBd6 ZCd7 ZDdS );z[Standard test images.

For more images, see

 - http://sipi.usc.edu/database/database.php

    N   )img_as_bool   )registryregistry_urls)__version__)	file_hashsha256c                 n   ddl }||j        vrt          d| d          d}|                    |          }t	          | d          5 }|                    |          }|r,|                    |           |                    |          }|,ddd           n# 1 swxY w Y   |                                S )a  
        Calculate the hash of a given file.
        Useful for checking if a file has changed or been corrupted.
        Parameters
        ----------
        fname : str
            The name of the file.
        alg : str
            The type of the hashing algorithm
        Returns
        -------
        hash : str
            The hash of the file.
        Examples
        --------
        >>> fname = "test-file-for-hash.txt"
        >>> with open(fname, "w") as f:
        ...     __ = f.write("content of the file")
        >>> print(file_hash(fname))
        0fc74468e6a9a829f103d069aeb2bb4f8646bad58bf146bb0e3379b759ec4a00
        >>> import os
        >>> os.remove(fname)
        r   NzAlgorithm 'z' not available in hashlibi   rb)hashlibalgorithms_available
ValueErrornewopenreadupdate	hexdigest)fnamealgr   	chunksizehasherfinbuffs          V/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/skimage/data/_fetchers.pyr	   r	      s   0 	g222LCLLLMMM	S!!% 	+#88I&&D +d###xx	**  +	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+
 !!!s   ABBBc                 T    t          j        |           sdS t          |           |k    S )z1Check if the provided path has the expected hash.F)ospexistsr	   )pathexpected_hashs     r   	_has_hashr!   C   s*    :d uT??m++    c                     	 dd l } t          | d          si }nddi}n# t          $ r d t          fcY S w xY wdt          v rt	          j        dd          }nt	          j        dd          }d|v rd	}nd
} | j        d|                     d          ||ddt          t          d|}t          j        t          |j                  d          }||fS )Nr   r   retry_if_failed   z+gitz	.dev0+gitz.dev+zChttps://github.com/scikit-image/scikit-image/raw/{version}/skimage/zDhttps://github.com/scikit-image/scikit-image/raw/v{version}/skimage/zscikit-imagemainSKIMAGE_DATADIR)r   base_urlversionversion_devenvr   urlsdata )poochhasattrImportError_LEGACY_DATA_DIRr   replacecreateos_cacher   r   r   joinstrabspath)r0   retryskimage_version_for_poochurlimage_fetcherdata_dirs         r   _create_image_fetcherr?   J   s(   & um,, 	+EE&*E & & & %%%%%& $/$7V$L$L!!$/$7$D$D!
'''VW !EL  ^^N++) " # M( xM122F;;H(""s    44c                 b    dt           j        v r ddl}|                    d|  d           dS dS )zIf a test case is calling pooch, skip it.

    This running the test suite in environments without internet
    access, skipping only the tests that try to fetch external data.
    PYTEST_CURRENT_TESTr   NzUnable to download T)allow_module_level)osenvironpytestskip)data_filenamerE   s     r   !_skip_pytest_case_requiring_poochrH      sI     
** 	9-99dSSSSS +*r"   c                    t          j        t          j        | d          d           t          j        t          d          }t          j        | d          }t          j        |          st          j        ||           dS dS )u   Prepare local cache directory if it doesn't exist already.

    Creates::

        /path/to/target_dir/
                 └─ data/
                    └─ README.txt
    r.   Texist_okzdata/README.txtN)rC   makedirsr   r7   _DISTRIBUTION_DIRr   shutilcopy2)
target_dir
readme_srcreadme_dests      r   _ensure_cache_dirrS      s~     KV,,t<<<<+->??J(:'899K:k"" .Z-----. .r"   c                 <   t           |          }t          t          j        t                    }nt          t          j                  }t          j        ||           }t          ||          r|S t          j        t          |           }t          ||          r|S t          t          |            t          d          t          |           	 t                              |           }|S # t          $ r$}t          |            t          d          |d}~ww xY w)a  Fetch a given data file from either the local cache or the repository.

    This function provides the path location of the data file given
    its name in the scikit-image repository. If a data file is not included in the
    distribution and pooch is available, it is downloaded and cached.

    Parameters
    ----------
    data_filename : str
        Name of the file in the scikit-image repository. e.g.
        'restoration/tess/camera_rl.npy'.

    Returns
    -------
    file_path : str
        Path of the local file.

    Raises
    ------
    KeyError:
        If the filename is not known to the scikit-image distribution.

    ModuleNotFoundError:
        If the filename is known to the scikit-image distribution but pooch
        is not installed.

    ConnectionError:
        If scikit-image is unable to connect to the internet but the
        dataset has not been downloaded yet.
    Na  The requested file is part of the scikit-image distribution, but requires the installation of an optional dependency, pooch. To install pooch, use your preferred python package manager. Follow installation instruction found at https://scikit-image.org/docs/stable/user_guide/install.htmlrP   zTried to download a scikit-image dataset, but no internet connection is available. To avoid this message in the future, try `skimage.data.download_all()` when you are connected to the internet.)r   _image_fetcherr   dirnamer>   r8   r9   r7   r!   rM   rH   ModuleNotFoundErrorrS   fetchConnectionError)rG   r    	cache_dircached_file_pathlegacy_file_patherrs         r   _fetchr_      s;   > ]+MK))		.//	 x	=99!=11   x 1=AA!=11   )-888!K
 
 	
 ++++)//>> 	 	 	)-888 )
 

 			s   C- -
D7DDc                 L   t           t          d          t           j        }	 |  t          j        |           } | t           _        t          t           j                   t           j        D ]}t          |          }|                    t          t           j                            s\t          j
        t           j        |          }t          j        t          j        |          d           t          j        ||           	 |t           _        dS # |t           _        w xY w)ak  Download all datasets for use with scikit-image offline.

    Scikit-image datasets are no longer shipped with the library by default.
    This allows us to use higher quality datasets, while keeping the
    library download size small.

    This function requires the installation of an optional dependency, pooch,
    to download the full dataset. Follow installation instruction found at

        https://scikit-image.org/docs/stable/user_guide/install.html

    Call this function to download all sample images making them available
    offline on your machine.

    Parameters
    ----------
    directory: path-like, optional
        The directory where the dataset should be stored.

    Raises
    ------
    ModuleNotFoundError:
        If pooch is not install, this error will be raised.

    Notes
    -----
    scikit-image will only search for images stored in the default directory.
    Only specify the directory if you wish to download the images to your own
    folder for a particular reason. You can access the location of the default
    data directory by inspecting the variable ``skimage.data.data_dir``.
    NzTo download all package data, scikit-image needs an optional dependency, pooch.To install pooch, follow our installation instructions found at https://scikit-image.org/docs/stable/user_guide/install.htmlrU   TrJ   )rV   rX   r   r   
expanduserrS   r   r_   
startswithr8   r7   rC   rL   rW   rN   rO   )	directoryold_dirrG   	file_path	dest_paths        r   download_allrg      s   B !K
 
 	
 !G& y11I"+N^%89999+4 	3 	3M}--I ''N,?(@(@AA 3H^%8-HH	CK	22TBBBBY	222	3 &g%%%%s   C"D D#c                       t          d          S )aK  Return the path to the XML file containing the weak classifier cascade.

    These classifiers were trained using LBP features. The file is part
    of the OpenCV repository [1]_.

    References
    ----------
    .. [1] OpenCV lbpcascade trained files
           https://github.com/opencv/opencv/tree/master/data/lbpcascades
    z&data/lbpcascade_frontalface_opencv.xml)r_   r/   r"   r   !lbp_frontal_face_cascade_filenameri   .  s     :;;;r"   Fc                 B    ddl m}  |t          |           |          S )a"  Load an image file located in the data directory.

    Parameters
    ----------
    f : string
        File name.
    as_gray : bool, optional
        Whether to convert the image to grayscale.

    Returns
    -------
    img : ndarray
        Image loaded from ``skimage.data_dir``.
    r   )imreadas_gray)iork   r_   )frm   rk   s      r   _loadrp   =  s1    " 6&))W----r"   c                       t          d          S )a  Gray-level "camera" image.

    Can be used for segmentation and denoising examples.

    Returns
    -------
    camera : (512, 512) uint8 ndarray
        Camera image.

    Notes
    -----
    No copyright restrictions. CC0 by the photographer (Lav Varshney).

    .. versionchanged:: 0.18
        This image was replaced due to copyright restrictions. For more
        information, please see [1]_.

    References
    ----------
    .. [1] https://github.com/scikit-image/scikit-image/issues/3927
    zdata/camera.pngrp   r/   r"   r   camerars   S      , "###r"   c                       t          d          S )a  A golden eagle.

    Suitable for examples on segmentation, Hough transforms, and corner
    detection.

    Notes
    -----
    No copyright restrictions. CC0 by the photographer (Dayane Machado).

    Returns
    -------
    eagle : (2019, 1826) uint8 ndarray
        Eagle image.
    zdata/eagle.pngrr   r/   r"   r   eaglerv   l  s     !"""r"   c                       t          d          S )a=  Color image of the astronaut Eileen Collins.

    Photograph of Eileen Collins, an American astronaut. She was selected
    as an astronaut in 1992 and first piloted the space shuttle STS-63 in
    1995. She retired in 2006 after spending a total of 38 days, 8 hours
    and 10 minutes in outer space.

    This image was downloaded from the NASA Great Images database
    <https://flic.kr/p/r9qvLn>`__.

    No known copyright restrictions, released into the public domain.

    Returns
    -------
    astronaut : (512, 512, 3) uint8 ndarray
        Astronaut image.
    zdata/astronaut.pngrr   r/   r"   r   	astronautrx   ~  s    & %&&&r"   c                  &    	 t          dd          S )a  Brick wall.

    Returns
    -------
    brick : (512, 512) uint8 image
        A small section of a brick wall.

    Notes
    -----
    The original image was downloaded from
    `CC0Textures <https://cc0textures.com/view.php?tex=Bricks25>`_ and licensed
    under the Creative Commons CC0 License.

    A perspective transform was then applied to the image, prior to
    rotating it by 90 degrees, cropping and scaling it to obtain the final
    image.
    zdata/brick.pngTrl   rr   r/   r"   r   brickrz     s    &+X !40000r"   c                  &    	 t          dd          S )a  Grass.

    Returns
    -------
    grass : (512, 512) uint8 image
        Some grass.

    Notes
    -----
    The original image was downloaded from
    `DeviantArt <https://www.deviantart.com/linolafett/art/Grass-01-434853879>`__
    and licensed under the Creative Commons CC0 License.

    The downloaded image was cropped to include a region of ``(512, 512)``
    pixels around the top left corner, converted to grayscale, then to uint8
    prior to saving the result in PNG format.

    zdata/grass.pngTrl   rr   r/   r"   r   grassr|     s    (2 !40000r"   c                  &    	 t          dd          S )a  Gravel

    Returns
    -------
    gravel : (512, 512) uint8 image
        Grayscale gravel sample.

    Notes
    -----
    The original image was downloaded from
    `CC0Textures <https://cc0textures.com/view.php?tex=Gravel04>`__ and
    licensed under the Creative Commons CC0 License.

    The downloaded image was then rescaled to ``(1024, 1024)``, then the
    top left ``(512, 512)`` pixel region  was cropped prior to converting the
    image to grayscale and uint8 data type. The result was saved using the
    PNG format.
    zdata/gravel.pngTrl   rr   r/   r"   r   gravelr~     s    (@ "D1111r"   c                       t          d          S )aI  Gray-level "text" image used for corner detection.

    Notes
    -----
    This image was downloaded from Wikipedia
    <https://en.wikipedia.org/wiki/File:Corner.png>`__.

    No known copyright restrictions, released into the public domain.

    Returns
    -------
    text : (172, 448) uint8 ndarray
        Text image.
    zdata/text.pngrr   r/   r"   r   textr   =  s      !!!r"   c                       t          d          S )a=  Checkerboard image.

    Checkerboards are often used in image calibration, since the
    corner-points are easy to locate.  Because of the many parallel
    edges, they also visualise distortions particularly well.

    Returns
    -------
    checkerboard : (200, 200) uint8 ndarray
        Checkerboard image.
    zdata/chessboard_GRAY.pngrr   r/   r"   r   checkerboardr   P  s     +,,,r"   c                       t          d          S )aw  3D fluorescence microscopy image of cells.

    The returned data is a 3D multichannel array with dimensions provided in
    ``(z, c, y, x)`` order. Each voxel has a size of ``(0.29 0.26 0.26)``
    micrometer. Channel 0 contains cell membranes, channel 1 contains nuclei.

    Returns
    -------
    cells3d: (60, 2, 256, 256) uint16 ndarray
        The volumetric images of cells taken with an optical microscope.

    Notes
    -----
    The data for this was provided by the Allen Institute for Cell Science.

    It has been downsampled by a factor of 4 in the row and column dimensions
    to reduce computational time.

    The microscope reports the following voxel spacing in microns:

        * Original voxel size is ``(0.290, 0.065, 0.065)``.
        * Scaling factor is ``(1, 4, 4)`` in each dimension.
        * After rescaling the voxel size is ``(0.29 0.26 0.26)``.
    zdata/cells3d.tifrr   r/   r"   r   cells3dr   _      4 #$$$r"   c                       t          d          S )av  Image of human cells undergoing mitosis.

    Returns
    -------
    human_mitosis: (512, 512) uint8 ndarray
        Data of human cells undergoing mitosis taken during the preparation
        of the manuscript in [1]_.

    Notes
    -----
    Copyright David Root. Licensed under CC-0 [2]_.

    References
    ----------
    .. [1] Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G,
           Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY,
           Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES,
           Sabatini DM, Root DE (2006) A lentiviral RNAi library for human and
           mouse genes applied to an arrayed viral high-content screen. Cell,
           124(6):1283-98 / :DOI: `10.1016/j.cell.2006.01.040` PMID 16564017

    .. [2] GitHub licensing discussion
           https://github.com/CellProfiler/examples/issues/41

    zdata/mitosis.tifrr   r/   r"   r   human_mitosisr   |  r   r"   c                       t          d          S )u#  Cell floating in saline.

    This is a quantitative phase image retrieved from a digital hologram using
    the Python library ``qpformat``. The image shows a cell with high phase
    value, above the background phase.

    Because of a banding pattern artifact in the background, this image is a
    good test of thresholding algorithms. The pixel spacing is 0.107 µm.

    These data were part of a comparison between several refractive index
    retrieval techniques for spherical objects as part of [1]_.

    This image is CC0, dedicated to the public domain. You may copy, modify, or
    distribute it without asking permission.

    Returns
    -------
    cell : (660, 550) uint8 array
        Image of a cell.

    References
    ----------
    .. [1] Paul Müller, Mirjam Schürmann, Salvatore Girardo, Gheorghe Cojoc,
           and Jochen Guck. "Accurate evaluation of size and refractive index
           for spherical objects in quantitative phase imaging." Optics Express
           26(8): 10729-10743 (2018). :DOI:`10.1364/OE.26.010729`
    zdata/cell.pngrr   r/   r"   r   cellr     s    8 !!!r"   c                       t          d          S )ax  Greek coins from Pompeii.

    This image shows several coins outlined against a gray background.
    It is especially useful in, e.g. segmentation tests, where
    individual objects need to be identified against a background.
    The background shares enough grey levels with the coins that a
    simple segmentation is not sufficient.

    Notes
    -----
    This image was downloaded from the
    `Brooklyn Museum Collection
    <https://www.brooklynmuseum.org/opencollection/archives/image/51611>`__.

    No known copyright restrictions.

    Returns
    -------
    coins : (303, 384) uint8 ndarray
        Coins image.
    zdata/coins.pngrr   r/   r"   r   coinsr     s    , !"""r"   c                       t          d          S )a  Mouse kidney tissue.

    This biological tissue on a pre-prepared slide was imaged with confocal
    fluorescence microscopy (Nikon C1 inverted microscope).
    Image shape is (16, 512, 512, 3). That is 512x512 pixels in X-Y,
    16 image slices in Z, and 3 color channels
    (emission wavelengths 450nm, 515nm, and 605nm, respectively).
    Real-space voxel size is 1.24 microns in X-Y, and 1.25 microns in Z.
    Data type is unsigned 16-bit integers.

    Notes
    -----
    This image was acquired by Genevieve Buckley at Monasoh Micro Imaging in
    2018.
    License: CC0

    Returns
    -------
    kidney : (16, 512, 512, 3) uint16 ndarray
        Kidney 3D multichannel image.
    zdata/kidney.tifrr   r/   r"   r   kidneyr     rt   r"   c                       t          d          S )a@  Lily of the valley plant stem.

    This plant stem on a pre-prepared slide was imaged with confocal
    fluorescence microscopy (Nikon C1 inverted microscope).
    Image shape is (922, 922, 4). That is 922x922 pixels in X-Y,
    with 4 color channels.
    Real-space voxel size is 1.24 microns in X-Y.
    Data type is unsigned 16-bit integers.

    Notes
    -----
    This image was acquired by Genevieve Buckley at Monasoh Micro Imaging in
    2018.
    License: CC0

    Returns
    -------
    lily : (922, 922, 4) uint16 ndarray
        Lily 2D multichannel image.
    zdata/lily.tifrr   r/   r"   r   lilyr         * !!!r"   c                       t          d          S )zyScikit-image logo, a RGBA image.

    Returns
    -------
    logo : (500, 500, 4) uint8 ndarray
        Logo image.
    zdata/logo.pngrr   r/   r"   r   logor     s     !!!r"   c                       t          d          S )a  Gray-level "microaneurysms" image.

    Detail from an image of the retina (green channel).
    The image is a crop of image 07_dr.JPG from the
    High-Resolution Fundus (HRF) Image Database:
    https://www5.cs.fau.de/research/data/fundus-images/

    Notes
    -----
    No copyright restrictions. CC0 given by owner (Andreas Maier).

    Returns
    -------
    microaneurysms : (102, 102) uint8 ndarray
        Retina image with lesions.

    References
    ----------
    .. [1] Budai, A., Bock, R, Maier, A., Hornegger, J.,
           Michelson, G. (2013).  Robust Vessel Segmentation in Fundus
           Images. International Journal of Biomedical Imaging, vol. 2013,
           2013.
           :DOI:`10.1155/2013/154860`
    zdata/microaneurysms.pngrr   r/   r"   r   microaneurysmsr     s    2 *+++r"   c                       t          d          S )zSurface of the moon.

    This low-contrast image of the surface of the moon is useful for
    illustrating histogram equalization and contrast stretching.

    Returns
    -------
    moon : (512, 512) uint8 ndarray
        Moon image.
    zdata/moon.pngrr   r/   r"   r   moonr   )       !!!r"   c                       t          d          S )zScanned page.

    This image of printed text is useful for demonstrations requiring uneven
    background illumination.

    Returns
    -------
    page : (191, 384) uint8 ndarray
        Page image.
    zdata/page.pngrr   r/   r"   r   pager   7  r   r"   c                  >    t          t          dd                    S )a<  Black and white silhouette of a horse.

    This image was downloaded from
    `openclipart <http://openclipart.org/detail/158377/horse-by-marauder>`

    No copyright restrictions. CC0 given by owner (Andreas Preuss (marauder)).

    Returns
    -------
    horse : (328, 400) bool ndarray
        Horse image.
    zdata/horse.pngTrl   )r   rp   r/   r"   r   horser   E  s      u-t<<<===r"   c                       t          d          S )aw  Motion blurred clock.

    This photograph of a wall clock was taken while moving the camera in an
    approximately horizontal direction.  It may be used to illustrate
    inverse filters and deconvolution.

    Released into the public domain by the photographer (Stefan van der Walt).

    Returns
    -------
    clock : (300, 400) uint8 ndarray
        Clock image.
    zdata/clock_motion.pngrr   r/   r"   r   clockr   U  s     ()))r"   c                       t          d          S )a  Immunohistochemical (IHC) staining with hematoxylin counterstaining.

    This picture shows colonic glands where the IHC expression of FHL2 protein
    is revealed with DAB. Hematoxylin counterstaining is applied to enhance the
    negative parts of the tissue.

    This image was acquired at the Center for Microscopy And Molecular Imaging
    (CMMI).

    No known copyright restrictions.

    Returns
    -------
    immunohistochemistry : (512, 512, 3) uint8 ndarray
        Immunohistochemistry image.
    zdata/ihc.pngrr   r/   r"   r   immunohistochemistryr   f  s    "    r"   c                       t          d          S )aU  Chelsea the cat.

    An example with texture, prominent edges in horizontal and diagonal
    directions, as well as features of differing scales.

    Notes
    -----
    No copyright restrictions.  CC0 by the photographer (Stefan van der Walt).

    Returns
    -------
    chelsea : (300, 451, 3) uint8 ndarray
        Chelsea image.
    zdata/chelsea.pngrr   r/   r"   r   chelsear   z  s     #$$$r"   c                       t          d          S )as  Coffee cup.

    This photograph is courtesy of Pikolo Espresso Bar.
    It contains several elliptical shapes as well as varying texture (smooth
    porcelain to coarse wood grain).

    Notes
    -----
    No copyright restrictions.  CC0 by the photographer (Rachel Michetti).

    Returns
    -------
    coffee : (400, 600, 3) uint8 ndarray
        Coffee image.
    zdata/coffee.pngrr   r/   r"   r   coffeer     s      "###r"   c                       t          d          S )a`  Hubble eXtreme Deep Field.

    This photograph contains the Hubble Telescope's farthest ever view of
    the universe. It can be useful as an example for multi-scale
    detection.

    Notes
    -----
    This image was downloaded from
    `HubbleSite
    <http://hubblesite.org/newscenter/archive/releases/2012/37/image/a/>`__.

    The image was captured by NASA and `may be freely used in the public domain
    <http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html>`_.

    Returns
    -------
    hubble_deep_field : (872, 1000, 3) uint8 ndarray
        Hubble deep field image.
    zdata/hubble_deep_field.jpgrr   r/   r"   r   hubble_deep_fieldr     s    * -...r"   c                       t          d          S )u  Human retina.

    This image of a retina is useful for demonstrations requiring circular
    images.

    Notes
    -----
    This image was downloaded from
    `wikimedia <https://commons.wikimedia.org/wiki/File:Fundus_photograph_of_normal_left_eye.jpg>`.
    This file is made available under the Creative Commons CC0 1.0 Universal
    Public Domain Dedication.

    References
    ----------
    .. [1] Häggström, Mikael (2014). "Medical gallery of Mikael Häggström 2014".
           WikiJournal of Medicine 1 (2). :DOI:`10.15347/wjm/2014.008`.
           ISSN 2002-4436. Public Domain

    Returns
    -------
    retina : (1411, 1411, 3) uint8 ndarray
        Retina image in RGB.
    zdata/retina.jpgrr   r/   r"   r   retinar     s    0 "###r"   c                  $    t          dd          S )a  Shepp Logan Phantom.

    References
    ----------
    .. [1] L. A. Shepp and B. F. Logan, "The Fourier reconstruction of a head
           section," in IEEE Transactions on Nuclear Science, vol. 21,
           no. 3, pp. 21-43, June 1974. :DOI:`10.1109/TNS.1974.6499235`

    Returns
    -------
    phantom : (400, 400) float64 image
        Image of the Shepp-Logan phantom in grayscale.
    zdata/phantom.pngTrl   rr   r/   r"   r   shepp_logan_phantomr     s     #T2222r"   c                       t          d          S )zkColor Wheel.

    Returns
    -------
    colorwheel : (370, 371, 3) uint8 image
        A colorwheel.
    zdata/color.pngrr   r/   r"   r   
colorwheelr     s     !"""r"   c                       t          d          S )aK  Return image sequence of in-vivo tissue showing the palisades of Vogt.

    In the human eye, the palisades of Vogt are normal features of the corneal
    limbus, which is the border between the cornea and the sclera (i.e., the
    white of the eye).
    In the image sequence, there are some dark spots due to the presence of
    dust on the reference mirror.

    Returns
    -------
    palisades_of_vogt: (60, 1440, 1440) uint16 ndarray

    Notes
    -----
    See info under `in-vivo-cornea-spots.tif` at
    https://gitlab.com/scikit-image/data/-/blob/master/README.md#data.

    zdata/palisades_of_vogt.tifrr   r/   r"   r   palisades_of_vogtr     s    & -...r"   c                       t          d          S )aj  Launch photo of DSCOVR on Falcon 9 by SpaceX.

    This is the launch photo of Falcon 9 carrying DSCOVR lifted off from
    SpaceX's Launch Complex 40 at Cape Canaveral Air Force Station, FL.

    Notes
    -----
    This image was downloaded from
    `SpaceX Photos
    <https://www.flickr.com/photos/spacexphotos/16511594820/in/photostream/>`__.

    The image was captured by SpaceX and `released in the public domain
    <http://arstechnica.com/tech-policy/2015/03/elon-musk-puts-spacex-photos-into-the-public-domain/>`_.

    Returns
    -------
    rocket : (427, 640, 3) uint8 ndarray
        Rocket image.
    zdata/rocket.jpgrr   r/   r"   r   rocketr     s    ( "###r"   c                      t          d          } t          j        |           d         }t          d          t          d          |fS )a	  Rectified stereo image pair with ground-truth disparities.

    The two images are rectified such that every pixel in the left image has
    its corresponding pixel on the same scanline in the right image. That means
    that both images are warped such that they have the same orientation but a
    horizontal spatial offset (baseline). The ground-truth pixel offset in
    column direction is specified by the included disparity map.

    The two images are part of the Middlebury 2014 stereo benchmark. The
    dataset was created by Nera Nesic, Porter Westling, Xi Wang, York Kitajima,
    Greg Krathwohl, and Daniel Scharstein at Middlebury College. A detailed
    description of the acquisition process can be found in [1]_.

    The images included here are down-sampled versions of the default exposure
    images in the benchmark. The images are down-sampled by a factor of 4 using
    the function `skimage.transform.downscale_local_mean`. The calibration data
    in the following and the included ground-truth disparity map are valid for
    the down-sampled images::

        Focal length:           994.978px
        Principal point x:      311.193px
        Principal point y:      254.877px
        Principal point dx:      31.086px
        Baseline:               193.001mm

    Returns
    -------
    img_left : (500, 741, 3) uint8 ndarray
        Left stereo image.
    img_right : (500, 741, 3) uint8 ndarray
        Right stereo image.
    disp : (500, 741, 3) float ndarray
        Ground-truth disparity map, where each value describes the offset in
        column direction between corresponding pixels in the left and the right
        stereo images. E.g. the corresponding pixel of
        ``img_left[10, 10 + disp[10, 10]]`` is ``img_right[10, 10]``.
        NaNs denote pixels in the left image that do not have ground-truth.

    Notes
    -----
    The original resolution images, images with different exposure and
    lighting, and ground-truth depth maps can be found at the Middlebury
    website [2]_.

    References
    ----------
    .. [1] D. Scharstein, H. Hirschmueller, Y. Kitajima, G. Krathwohl, N.
           Nesic, X. Wang, and P. Westling. High-resolution stereo datasets
           with subpixel-accurate ground truth. In German Conference on Pattern
           Recognition (GCPR 2014), Muenster, Germany, September 2014.
    .. [2] http://vision.middlebury.edu/stereo/data/scenes2014/

    zdata/motorcycle_disp.npzarr_0zdata/motorcycle_left.pngzdata/motorcycle_right.png)r_   nploadrp   )filenamedisps     r   stereo_motorcycler     sG    l 011H78W%D,--u5P/Q/QSWXXr"   c                  D    t          j        t          d                    S )a*  Subset of data from the LFW dataset.

    This database is a subset of the LFW database containing:

    * 100 faces
    * 100 non-faces

    The full dataset is available at [2]_.

    Returns
    -------
    images : (200, 25, 25) uint8 ndarray
        100 first images are faces and subsequent 100 are non-faces.

    Notes
    -----
    The faces were randomly selected from the LFW dataset and the non-faces
    were extracted from the background of the same dataset. The cropped ROIs
    have been resized to a 25 x 25 pixels.

    References
    ----------
    .. [1] Huang, G., Mattar, M., Lee, H., & Learned-Miller, E. G. (2012).
           Learning to align from scratch. In Advances in Neural Information
           Processing Systems (pp. 764-772).
    .. [2] http://vis-www.cs.umass.edu/lfw/

    zdata/lfw_subset.npy)r   r   r_   r/   r"   r   
lfw_subsetr   Z  s    : 76/00111r"   c                       t          d          S )a  Microscopy image of dermis and epidermis (skin layers).

    Hematoxylin and eosin stained slide at 10x of normal epidermis and dermis
    with a benign intradermal nevus.

    Notes
    -----
    This image requires an Internet connection the first time it is called,
    and to have the ``pooch`` package installed, in order to fetch the image
    file from the scikit-image datasets repository.

    The source of this image is
    https://en.wikipedia.org/wiki/File:Normal_Epidermis_and_Dermis_with_Intradermal_Nevus_10x.JPG

    The image was released in the public domain by its author Kilbad.

    Returns
    -------
    skin : (960, 1280, 3) RGB image of uint8
    zdata/skin.jpgrr   r/   r"   r   skinr   z  r   r"   c                       t          d          S )aP  Image sequence of synchrotron x-radiographs showing the rapid
    solidification of a nickel alloy sample.

    Returns
    -------
    nickel_solidification: (11, 384, 512) uint16 ndarray

    Notes
    -----
    See info under `nickel_solidification.tif` at
    https://gitlab.com/scikit-image/data/-/blob/master/README.md#data.

    zdata/solidification.tifrr   r/   r"   r   nickel_solidificationr     s     *+++r"   c                       t          d          S )ac  Microscopy image sequence with fluorescence tagging of proteins
    re-localizing from the cytoplasmic area to the nuclear envelope.

    Returns
    -------
    protein_transport: (15, 2, 180, 183) uint8 ndarray

    Notes
    -----
    See info under `NPCsingleNucleus.tif` at
    https://gitlab.com/scikit-image/data/-/blob/master/README.md#data.

    zdata/protein_transport.tifrr   r/   r"   r   protein_transportr     s     -...r"   c                       t          d          S )ax  Subset of data from the University of North Carolina Volume Rendering
    Test Data Set.

    The full dataset is available at [1]_.

    Returns
    -------
    image : (10, 256, 256) uint16 ndarray

    Notes
    -----
    The 3D volume consists of 10 layers from the larger volume.

    References
    ----------
    .. [1] https://graphics.stanford.edu/data/voldata/

    zdata/brain.tiffrr   r/   r"   r   brainr     s    & "###r"   c                  >    t          d          t          d          fS )a3  Case B1 image pair from the first PIV challenge.

    Returns
    -------
    image0, image1 : (512, 512) grayscale images
        A pair of images featuring synthetic moving particles.

    Notes
    -----
    This image was licensed as CC0 by its author, Prof. Koji Okamoto, with
    thanks to Prof. Jun Sakakibara, who maintains the PIV Challenge site.

    References
    ----------
    .. [1] Particle Image Velocimetry (PIV) Challenge site
           http://pivchallenge.org
    .. [2] 1st PIV challenge Case B: http://pivchallenge.org/pub/index.html#b
    zdata/pivchallenge-B-B001_1.tifzdata/pivchallenge-B-B001_2.tifrr   r/   r"   r   vortexr     s&    ( 	.//.// r"   )r
   )N)F)E__doc__numpyr   rN   
util.dtyper   	_registryr   r    r   os.pathr   r   rC   rW   __file__r3   rM   r0   r	   rX   r!   r?   rV   r>   rH   rS   r_   rg   ri   rp   rs   rv   rx   rz   r|   r~   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   catr   r   r   r   r   r   r   r   r   r   r   r   r   r   r/   r"   r   <module>r      s         $ $ $ $ $ $ . . . . . . . .             				3;x(( CK 011 )" '" '" '"$" $" $" $" $" $"'"T, , ,3# 3# 3#l 1022 T T T(. . . H H HV9& 9& 9& 9&x< < <. . . .,$ $ $2# # #$' ' ',?1 ?1 ?1D-1 -1 -1`42 42 42n" " "&- - -% % %:% % %:" " "># # #2$ $ $2" " "0" " ", , ,8" " "" " "> > > * * *"! ! !(% % %& $ $ $&/ / /0$ $ $63 3 3"# # #/ / /,$ $ $.8Y 8Y 8Yv2 2 2@" " "0, , ,"/ / /"$ $ $,    s   
A 	AA