
    0Phu                     6   d Z ddlmZ ddlZddlmZ ddlmZ ddl	m
Z
mZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZ ddlmZmZmZ ddlmZ ddlmZm Z m!Z!m"Z"m#Z# ddl$m%Z% ddl&m'Z' ddl(m)Z)m*Z* ddl+m,Z,m-Z- dgZ.d Z/d Z0	 d-dZ1 e# eddg           eddg           eddg          gddgde e2gddgddgddg e"h d          ge3g e!e ddd !          g e"h d"          g e"h d#          gd$d%&          dddd'd(d)d'd*d+d,            Z4dS ).zBPartial dependence plots for regression and classification models.    )IterableN)sparse)
mquantiles   )is_classifieris_regressor)RandomForestRegressor)BaseGradientBoosting)BaseHistGradientBoosting)DecisionTreeRegressor)Bunch_safe_indexingcheck_array)_determine_key_type_get_column_indices_safe_assign)check_matplotlib_support)
HasMethodsIntegralInterval
StrOptionsvalidate_params)_get_response_values)	cartesian)_check_sample_weightcheck_is_fitted   )_check_feature_names_get_feature_indexpartial_dependencec                 V   t          |t                    rt          |          dk    rt          d          t	          d |D                       st          d          |d         |d         k    rt          d          |dk    rt          d          g }t          |          D ]\  }}	 t          j        t          | |d	                    }n&# t          $ r}t          d
| d          |d}~ww xY w|s|j
        d         |k     r|}	nvt          t          | |d	          |d          }
t          j        |
d         |
d                   rt          d          t          j        |
d         |
d         |d          }	|                    |	           t          |          |fS )a   Generate a grid of points based on the percentiles of X.

    The grid is a cartesian product between the columns of ``values``. The
    ith column of ``values`` consists in ``grid_resolution`` equally-spaced
    points between the percentiles of the jth column of X.

    If ``grid_resolution`` is bigger than the number of unique values in the
    j-th column of X or if the feature is a categorical feature (by inspecting
    `is_categorical`) , then those unique values will be used instead.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_target_features)
        The data.

    percentiles : tuple of float
        The percentiles which are used to construct the extreme values of
        the grid. Must be in [0, 1].

    is_categorical : list of bool
        For each feature, tells whether it is categorical or not. If a feature
        is categorical, then the values used will be the unique ones
        (i.e. categories) instead of the percentiles.

    grid_resolution : int
        The number of equally spaced points to be placed on the grid for each
        feature.

    Returns
    -------
    grid : ndarray of shape (n_points, n_target_features)
        A value for each feature at each point in the grid. ``n_points`` is
        always ``<= grid_resolution ** X.shape[1]``.

    values : list of 1d ndarrays
        The values with which the grid has been created. The size of each
        array ``values[j]`` is either ``grid_resolution``, or the number of
        unique values in ``X[:, j]``, whichever is smaller.
    r   z/'percentiles' must be a sequence of 2 elements.c              3   6   K   | ]}d |cxk    odk    nc V  dS )r   r   N ).0xs     f/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/sklearn/inspection/_partial_dependence.py	<genexpr>z_grid_from_X.<locals>.<genexpr>Q   s6      00qqA{{{{{{{{000000    z''percentiles' values must be in [0, 1].r   r   z9percentiles[0] must be strictly less than percentiles[1].z2'grid_resolution' must be strictly greater than 1.axiszThe column #z contains mixed data types. Finding unique categories fail due to sorting. It usually means that the column contains `np.nan` values together with `str` categories. Such use case is not yet supported in scikit-learn.N)probr*   ztpercentiles are too close to each other, unable to build the grid. Please choose percentiles that are further apart.T)numendpoint)
isinstancer   len
ValueErrorall	enumeratenpuniquer   	TypeErrorshaper   allcloselinspaceappendr   )Xpercentilesis_categoricalgrid_resolutionvaluesfeatureis_catuniquesexcr*   emp_percentiless              r&   _grid_from_XrD   '   s   P k8,, LK0@0@A0E0EJKKK00K00000 DBCCC1~Q''TUUU!MNNNF %^44 " "
	iq' B B BCCGG 	 	 	 =w = = = 
 	  	W]1%77 DD )q'2221  O {?1-q/ABB  .  
 ;""#	  D 	dVf$$s   -$C
C5C00C5c                 t    |                      ||          }|j        dk    r|                    dd          }|S )a}	  Calculate partial dependence via the recursion method.

    The recursion method is in particular enabled for tree-based estimators.

    For each `grid` value, a weighted tree traversal is performed: if a split node
    involves an input feature of interest, the corresponding left or right branch
    is followed; otherwise both branches are followed, each branch being weighted
    by the fraction of training samples that entered that branch. Finally, the
    partial dependence is given by a weighted average of all the visited leaves
    values.

    This method is more efficient in terms of speed than the `'brute'` method
    (:func:`~sklearn.inspection._partial_dependence._partial_dependence_brute`).
    However, here, the partial dependence computation is done explicitly with the
    `X` used during training of `est`.

    Parameters
    ----------
    est : BaseEstimator
        A fitted estimator object implementing :term:`predict` or
        :term:`decision_function`. Multioutput-multiclass classifiers are not
        supported. Note that `'recursion'` is only supported for some tree-based
        estimators (namely
        :class:`~sklearn.ensemble.GradientBoostingClassifier`,
        :class:`~sklearn.ensemble.GradientBoostingRegressor`,
        :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
        :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
        :class:`~sklearn.tree.DecisionTreeRegressor`,
        :class:`~sklearn.ensemble.RandomForestRegressor`,
        ).

    grid : array-like of shape (n_points, n_target_features)
        The grid of feature values for which the partial dependence is calculated.
        Note that `n_points` is the number of points in the grid and `n_target_features`
        is the number of features you are doing partial dependence at.

    features : array-like of {int, str}
        The feature (e.g. `[0]`) or pair of interacting features
        (e.g. `[(0, 1)]`) for which the partial dependency should be computed.

    Returns
    -------
    averaged_predictions : array-like of shape (n_targets, n_points)
        The averaged predictions for the given `grid` of features values.
        Note that `n_targets` is the number of targets (e.g. 1 for binary
        classification, `n_tasks` for multi-output regression, and `n_classes` for
        multiclass classification) and `n_points` is the number of points in the `grid`.
    r   )%_compute_partial_dependence_recursionndimreshape)estgridfeaturesaveraged_predictionss       r&   _partial_dependence_recursionrN      sG    b DDT8TT A%%  4;;ArBBr(   c                    g }g }|dk    rt          |           rdnddg}|                                }|D ]}	t          |          D ]\  }
}t          ||	|
         |           t	          | ||          \  }}|                    |           |                    t          j        |d|                     |j        d         }t          j	        |          j
        }t          |           r"|j        d	k    r|                    |d
          }n>t          |           r/|j        d         d	k    r|d         }|                    |d
          }t          j	        |          j
        }t          |           r"|j        dk    r|                    dd
          }n>t          |           r/|j        d         d	k    r|d         }|                    dd
          }||fS )a&  Calculate partial dependence via the brute force method.

    The brute method explicitly averages the predictions of an estimator over a
    grid of feature values.

    For each `grid` value, all the samples from `X` have their variables of
    interest replaced by that specific `grid` value. The predictions are then made
    and averaged across the samples.

    This method is slower than the `'recursion'`
    (:func:`~sklearn.inspection._partial_dependence._partial_dependence_recursion`)
    version for estimators with this second option. However, with the `'brute'`
    force method, the average will be done with the given `X` and not the `X`
    used during training, as it is done in the `'recursion'` version. Therefore
    the average can always accept `sample_weight` (even when the estimator was
    fitted without).

    Parameters
    ----------
    est : BaseEstimator
        A fitted estimator object implementing :term:`predict`,
        :term:`predict_proba`, or :term:`decision_function`.
        Multioutput-multiclass classifiers are not supported.

    grid : array-like of shape (n_points, n_target_features)
        The grid of feature values for which the partial dependence is calculated.
        Note that `n_points` is the number of points in the grid and `n_target_features`
        is the number of features you are doing partial dependence at.

    features : array-like of {int, str}
        The feature (e.g. `[0]`) or pair of interacting features
        (e.g. `[(0, 1)]`) for which the partial dependency should be computed.

    X : array-like of shape (n_samples, n_features)
        `X` is used to generate values for the complement features. That is, for
        each value in `grid`, the method will average the prediction of each
        sample from `X` having that grid value for `features`.

    response_method : {'auto', 'predict_proba', 'decision_function'},             default='auto'
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. For regressors
        this parameter is ignored and the response is always the output of
        :term:`predict`. By default, :term:`predict_proba` is tried first
        and we revert to :term:`decision_function` if it doesn't exist.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights are used to calculate weighted means when averaging the
        model output. If `None`, then samples are equally weighted. Note that
        `sample_weight` does not change the individual predictions.

    Returns
    -------
    averaged_predictions : array-like of shape (n_targets, n_points)
        The averaged predictions for the given `grid` of features values.
        Note that `n_targets` is the number of targets (e.g. 1 for binary
        classification, `n_tasks` for multi-output regression, and `n_classes` for
        multiclass classification) and `n_points` is the number of points in the `grid`.

    predictions : array-like
        The predictions for the given `grid` of features values over the samples
        from `X`. For non-multioutput regression and binary classification the
        shape is `(n_instances, n_points)` and for multi-output regression and
        multiclass classification the shape is `(n_targets, n_instances, n_points)`,
        where `n_targets` is the number of targets (`n_tasks` for multi-output
        regression, and `n_classes` for multiclass classification), `n_instances`
        is the number of instances in `X`, and `n_points` is the number of points
        in the `grid`.
    autopredictpredict_probadecision_function)column_indexer)response_methodr   )r*   weightsr   rF   r   )r   copyr2   r   r   r9   r3   averager6   arrayTrH   rI   r   )rJ   rK   rL   r:   rU   sample_weightpredictionsrM   X_eval
new_valuesivariablepred_	n_sampless                  r&   _partial_dependence_bruterd      s   P K&  %c**VIIBU0V 	 VVXXF U U
$X.. 	I 	IKAxAxHHHHH 'sFOTTTa4   ##BJt!]$S$S$STTTT
I (;'')KC 9[-22!)))R88	s		 9 1! 4 9 9 "!n!)))R88 8$899;C C16!;;3;;ArBB	s		 C 4 :1 = B B  4A63;;ArBB,,r(   fitrQ   rR   rS   z
array-likezsparse matrix>   rP   rR   rS   left)closed>   rP   brute	recursion>   bothrX   
individual)	estimatorr:   rL   r[   categorical_featuresfeature_namesrU   r;   r=   methodkindT)prefer_skip_nested_validationrP   )g?gffffff?d   rX   )r[   rm   rn   rU   r;   r=   ro   rp   c                   t          |            t          |           st          |           st          d          t          |           r4t	          | j        d         t          j                  rt          d          t          |d          s+t          j
        |          st          |dt                    }t          |           r|dk    rt          d          |
d	k    r|	d
k    rt          d          d}	|	d
k    r|t          d          |	dk    rK|d}	nFt	          | t                    r
| j        d
}	n't	          | t          t           t"          f          rd
}	nd}	|	d
k    rt	          | t          t          t           t"          f          s7d}t          d                    d                    |                              |dk    rd}|dk    r"t          d                    |                    |t)          ||          }t+          |d          dk    rWt          j        t          j        |d                    r0t          d                    |j        d         dz
                      t          j        t5          ||          t          j        d                                          }t;          |          |j        d         }dgt=          |          z  }nt          j                  j        j         dk    r5j!        |k    rt          dj!         d| d          fd|D             }nCj        j         d v rfd!D             fd"|D             }nt          d#j         d$          tE          tG          ||d%          |||          \  }}|	dk    r<tI          | |||||          \  }} |j%        d&|j        d         gd' |D             R  }ntM          | ||          } |j%        d&gd( |D             R  }tO          |)          }|
d	k    r||d	<   n|
d*k    r||d*<   n
||d	<   ||d*<   |S )+a   Partial dependence of ``features``.

    Partial dependence of a feature (or a set of features) corresponds to
    the average response of an estimator for each possible value of the
    feature.

    Read more in the :ref:`User Guide <partial_dependence>`.

    .. warning::

        For :class:`~sklearn.ensemble.GradientBoostingClassifier` and
        :class:`~sklearn.ensemble.GradientBoostingRegressor`, the
        `'recursion'` method (used by default) will not account for the `init`
        predictor of the boosting process. In practice, this will produce
        the same values as `'brute'` up to a constant offset in the target
        response, provided that `init` is a constant estimator (which is the
        default). However, if `init` is not a constant estimator, the
        partial dependence values are incorrect for `'recursion'` because the
        offset will be sample-dependent. It is preferable to use the `'brute'`
        method. Note that this only applies to
        :class:`~sklearn.ensemble.GradientBoostingClassifier` and
        :class:`~sklearn.ensemble.GradientBoostingRegressor`, not to
        :class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
        :class:`~sklearn.ensemble.HistGradientBoostingRegressor`.

    Parameters
    ----------
    estimator : BaseEstimator
        A fitted estimator object implementing :term:`predict`,
        :term:`predict_proba`, or :term:`decision_function`.
        Multioutput-multiclass classifiers are not supported.

    X : {array-like, sparse matrix or dataframe} of shape (n_samples, n_features)
        ``X`` is used to generate a grid of values for the target
        ``features`` (where the partial dependence will be evaluated), and
        also to generate values for the complement features when the
        `method` is 'brute'.

    features : array-like of {int, str, bool} or int or str
        The feature (e.g. `[0]`) or pair of interacting features
        (e.g. `[(0, 1)]`) for which the partial dependency should be computed.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights are used to calculate weighted means when averaging the
        model output. If `None`, then samples are equally weighted. If
        `sample_weight` is not `None`, then `method` will be set to `'brute'`.
        Note that `sample_weight` is ignored for `kind='individual'`.

        .. versionadded:: 1.3

    categorical_features : array-like of shape (n_features,) or shape             (n_categorical_features,), dtype={bool, int, str}, default=None
        Indicates the categorical features.

        - `None`: no feature will be considered categorical;
        - boolean array-like: boolean mask of shape `(n_features,)`
            indicating which features are categorical. Thus, this array has
            the same shape has `X.shape[1]`;
        - integer or string array-like: integer indices or strings
            indicating categorical features.

        .. versionadded:: 1.2

    feature_names : array-like of shape (n_features,), dtype=str, default=None
        Name of each feature; `feature_names[i]` holds the name of the feature
        with index `i`.
        By default, the name of the feature corresponds to their numerical
        index for NumPy array and their column name for pandas dataframe.

        .. versionadded:: 1.2

    response_method : {'auto', 'predict_proba', 'decision_function'},             default='auto'
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. For regressors
        this parameter is ignored and the response is always the output of
        :term:`predict`. By default, :term:`predict_proba` is tried first
        and we revert to :term:`decision_function` if it doesn't exist. If
        ``method`` is 'recursion', the response is always the output of
        :term:`decision_function`.

    percentiles : tuple of float, default=(0.05, 0.95)
        The lower and upper percentile used to create the extreme values
        for the grid. Must be in [0, 1].

    grid_resolution : int, default=100
        The number of equally spaced points on the grid, for each target
        feature.

    method : {'auto', 'recursion', 'brute'}, default='auto'
        The method used to calculate the averaged predictions:

        - `'recursion'` is only supported for some tree-based estimators
          (namely
          :class:`~sklearn.ensemble.GradientBoostingClassifier`,
          :class:`~sklearn.ensemble.GradientBoostingRegressor`,
          :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
          :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
          :class:`~sklearn.tree.DecisionTreeRegressor`,
          :class:`~sklearn.ensemble.RandomForestRegressor`,
          ) when `kind='average'`.
          This is more efficient in terms of speed.
          With this method, the target response of a
          classifier is always the decision function, not the predicted
          probabilities. Since the `'recursion'` method implicitly computes
          the average of the Individual Conditional Expectation (ICE) by
          design, it is not compatible with ICE and thus `kind` must be
          `'average'`.

        - `'brute'` is supported for any estimator, but is more
          computationally intensive.

        - `'auto'`: the `'recursion'` is used for estimators that support it,
          and `'brute'` is used otherwise. If `sample_weight` is not `None`,
          then `'brute'` is used regardless of the estimator.

        Please see :ref:`this note <pdp_method_differences>` for
        differences between the `'brute'` and `'recursion'` method.

    kind : {'average', 'individual', 'both'}, default='average'
        Whether to return the partial dependence averaged across all the
        samples in the dataset or one value per sample or both.
        See Returns below.

        Note that the fast `method='recursion'` option is only available for
        `kind='average'` and `sample_weights=None`. Computing individual
        dependencies and doing weighted averages requires using the slower
        `method='brute'`.

        .. versionadded:: 0.24

    Returns
    -------
    predictions : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        individual : ndarray of shape (n_outputs, n_instances,                 len(values[0]), len(values[1]), ...)
            The predictions for all the points in the grid for all
            samples in X. This is also known as Individual
            Conditional Expectation (ICE).
            Only available when `kind='individual'` or `kind='both'`.

        average : ndarray of shape (n_outputs, len(values[0]),                 len(values[1]), ...)
            The predictions for all the points in the grid, averaged
            over all samples in X (or over the training data if
            `method` is 'recursion').
            Only available when `kind='average'` or `kind='both'`.

        grid_values : seq of 1d ndarrays
            The values with which the grid has been created. The generated
            grid is a cartesian product of the arrays in `grid_values` where
            `len(grid_values) == len(features)`. The size of each array
            `grid_values[j]` is either `grid_resolution`, or the number of
            unique values in `X[:, j]`, whichever is smaller.

            .. versionadded:: 1.3

        `n_outputs` corresponds to the number of classes in a multi-class
        setting, or to the number of tasks for multi-output regression.
        For classical regression and binary classification `n_outputs==1`.
        `n_values_feature_j` corresponds to the size `grid_values[j]`.

    See Also
    --------
    PartialDependenceDisplay.from_estimator : Plot Partial Dependence.
    PartialDependenceDisplay : Partial Dependence visualization.

    Examples
    --------
    >>> X = [[0, 0, 2], [1, 0, 0]]
    >>> y = [0, 1]
    >>> from sklearn.ensemble import GradientBoostingClassifier
    >>> gb = GradientBoostingClassifier(random_state=0).fit(X, y)
    >>> partial_dependence(gb, features=[0], X=X, percentiles=(0, 1),
    ...                    grid_resolution=2) # doctest: +SKIP
    (array([[-4.52...,  4.52...]]), [array([ 0.,  1.])])
    z5'estimator' must be a fitted regressor or classifier.r   z3Multiclass-multioutput estimators are not supported	__array__z	allow-nan)ensure_all_finitedtyperP   zKThe response_method parameter is ignored for regressors and must be 'auto'.rX   ri   zCThe 'recursion' method only applies when 'kind' is set to 'average'rh   NzFThe 'recursion' method can only be applied when sample_weight is None.)GradientBoostingClassifierGradientBoostingRegressorHistGradientBoostingClassifierHistGradientBoostingRegressorrz   r   r	   z[Only the following estimators support the 'recursion' method: {}. Try using method='brute'.z, rS   zUWith the 'recursion' method, the response_method must be 'decision_function'. Got {}.F)accept_sliceintzall features must be in [0, {}]r   C)rv   orderbzeWhen `categorical_features` is a boolean array-like, the array should be of shape (n_features,). Got z elements while `X` contains z
 features.c                      g | ]
}|         S r#   r#   )r$   idxrm   s     r&   
<listcomp>z&partial_dependence.<locals>.<listcomp>  s    TTTC237TTTr(   )r_   OUc                 2    g | ]}t          |           S ))rn   )r   )r$   catrn   s     r&   r   z&partial_dependence.<locals>.<listcomp>  s6     ( ( ( #3mDDD( ( (r(   c                     g | ]}|v S r#   r#   )r$   r   categorical_features_idxs     r&   r   z&partial_dependence.<locals>.<listcomp>  s,       47//  r(   zXExpected `categorical_features` to be an array-like of boolean, integer, or string. Got z	 instead.r)   rF   c                 (    g | ]}|j         d          S r   r6   r$   vals     r&   r   z&partial_dependence.<locals>.<listcomp>  s    ===scil===r(   c                 (    g | ]}|j         d          S r   r   r   s     r&   r   z&partial_dependence.<locals>.<listcomp>  s    ---scil---r(   )grid_valuesrk   )(r   r   r   r0   r.   classes_r3   ndarrayhasattrr   issparser   objectr
   initr   r   r	   formatjoinr   r   anylessr6   asarrayr   intpravelr   r/   rv   rp   sizerD   r   rd   rI   rN   r   )rl   r:   rL   r[   rm   rn   rU   r;   r=   ro   rp   supported_classes_recursionfeatures_indices
n_featuresr<   rK   r>   rM   r\   pdp_resultsr   s       ``              @r&   r    r    A  s   j I)$$ RY(?(? RPQQQY PJy/A!/Dbj$Q$Q PNOOO A{## Hvq'9'9 H[GGGI 
?f#<#<
 
 	

 y[  U   !:T
 
 	
 $FF	#788 	Y^=S FF%'<>ST
 
 	 !FFF$(%%	
 
 	+' 88>II9::9 9   f$$1O111//5vo/F/F  
  ,]A>>8%888EAA 6"'(A&&'' 	W>EEagajSTnUUVVVzAx((s  egg  )M::MJ#3'7#8#88!z*>??%*c11#(J66 .+0. . ". . .   UTTTCSTTTNN!',??( ( ( (/( ( ($   ;K  NN R,@,FR R R  
  q*333	 LD& ,Et-q/=-
 -
)k *k)

==f===
 
 
  =t- 
  
 8/7
--f---   F+++Ky!5I			$/L!!!5I$/L!r(   )N)5__doc__collections.abcr   numpyr3   scipyr   scipy.stats.mstatsr   baser   r   ensembler	   ensemble._gbr
   2ensemble._hist_gradient_boosting.gradient_boostingr   treer   utilsr   r   r   utils._indexingr   r   r   utils._optional_dependenciesr   utils._param_validationr   r   r   r   r   utils._responser   utils.extmathr   utils.validationr   r   	_pd_utilsr   r   __all__rD   rN   rd   strtupler    r#   r(   r&   <module>r      s5   H H
 % $ $ $ $ $           ) ) ) ) ) ) . . . . . . . . , , , , , , / / / / / /      ) ( ( ( ( ( 6 6 6 6 6 6 6 6 6 6 T T T T T T T T T T C C C C C C              3 2 2 2 2 2 % % % % % % D D D D D D D D ? ? ? ? ? ? ? ? 
Y% Y% Y%x7  7  7 v <@A- A- A- A-H  Jy)**J/00J2344

 O,!8S1&-!-t 4&-&J'U'U'UVVWw$HXq$vFFFG:<<<==>===>>? " #'%  2 	b b b b) (b b br(   