
    0PhJ<                         d dl ZddlmZ ddlmZ ddlmZ ddlm	Z	 ddl
mZ ddlmZ dd	lmZmZmZmZmZ d
 Z G d d          ZdS )    N   )is_regressor)LabelEncoder)_safe_indexing)check_matplotlib_support)_get_response_values)_get_adapter_from_container)_is_arraylike_not_scalar_is_pandas_df_is_polars_df_num_featurescheck_is_fittedc                 6   t          | d          }|r+t          | j        d                   rd}t          |          |r:t	          | j                  dk    r"|dvr|d}t          |          |dk    rd	n|}n|dk    rt          |           rd	}ng d
}n|}|S )a  Validate the response methods to be used with the fitted estimator.

    Parameters
    ----------
    estimator : object
        Fitted estimator to check.

    response_method : {'auto', 'predict_proba', 'decision_function', 'predict'}
        Specifies whether to use :term:`predict_proba`,
        :term:`decision_function`, :term:`predict` as the target response.
        If set to 'auto', the response method is tried in the following order:
        :term:`decision_function`, :term:`predict_proba`, :term:`predict`.

    class_of_interest : int, float, bool, str or None
        The class considered when plotting the decision. Cannot be None if
        multiclass and `response_method` is 'predict_proba' or 'decision_function'.

        .. versionadded:: 1.4

    Returns
    -------
    prediction_method : list of str or str
        The name or list of names of the response methods to use.
    classes_r   zFMulti-label and multi-output multi-class classifiers are not supported   >   autopredictNzMulticlass classifiers are only supported when `response_method` is 'predict' or 'auto'. Else you must provide `class_of_interest` to plot the decision boundary of a specific class.r   r   )decision_functionpredict_probar   )hasattrr
   r   
ValueErrorlenr   )	estimatorresponse_methodclass_of_interesthas_classesmsgprediction_methods         j/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/sklearn/inspection/_plot/decision_boundary.py_check_boundary_response_methodr       s    2 )Z00K /	0B10EFF Voo ,s9-..22"555:K:SB 
 S//!)8F)B)BII	F	"	"	"" 	R ) Q Q Q+    c            
       R    e Zd ZdZddddZddZedddd	ddddd
d            ZdS )DecisionBoundaryDisplaya	  Decisions boundary visualization.

    It is recommended to use
    :func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
    to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
    attributes.

    Read more in the :ref:`User Guide <visualizations>`.

    .. versionadded:: 1.1

    Parameters
    ----------
    xx0 : ndarray of shape (grid_resolution, grid_resolution)
        First output of :func:`meshgrid <numpy.meshgrid>`.

    xx1 : ndarray of shape (grid_resolution, grid_resolution)
        Second output of :func:`meshgrid <numpy.meshgrid>`.

    response : ndarray of shape (grid_resolution, grid_resolution)
        Values of the response function.

    xlabel : str, default=None
        Default label to place on x axis.

    ylabel : str, default=None
        Default label to place on y axis.

    Attributes
    ----------
    surface_ : matplotlib `QuadContourSet` or `QuadMesh`
        If `plot_method` is 'contour' or 'contourf', `surface_` is a
        :class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
        `plot_method` is 'pcolormesh', `surface_` is a
        :class:`QuadMesh <matplotlib.collections.QuadMesh>`.

    ax_ : matplotlib Axes
        Axes with decision boundary.

    figure_ : matplotlib Figure
        Figure containing the decision boundary.

    See Also
    --------
    DecisionBoundaryDisplay.from_estimator : Plot decision boundary given an estimator.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> import numpy as np
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.inspection import DecisionBoundaryDisplay
    >>> from sklearn.tree import DecisionTreeClassifier
    >>> iris = load_iris()
    >>> feature_1, feature_2 = np.meshgrid(
    ...     np.linspace(iris.data[:, 0].min(), iris.data[:, 0].max()),
    ...     np.linspace(iris.data[:, 1].min(), iris.data[:, 1].max())
    ... )
    >>> grid = np.vstack([feature_1.ravel(), feature_2.ravel()]).T
    >>> tree = DecisionTreeClassifier().fit(iris.data[:, :2], iris.target)
    >>> y_pred = np.reshape(tree.predict(grid), feature_1.shape)
    >>> display = DecisionBoundaryDisplay(
    ...     xx0=feature_1, xx1=feature_2, response=y_pred
    ... )
    >>> display.plot()
    <...>
    >>> display.ax_.scatter(
    ...     iris.data[:, 0], iris.data[:, 1], c=iris.target, edgecolor="black"
    ... )
    <...>
    >>> plt.show()
    N)xlabelylabelc                L    || _         || _        || _        || _        || _        d S )Nxx0xx1responser$   r%   )selfr(   r)   r*   r$   r%   s         r   __init__z DecisionBoundaryDisplay.__init__   s)     r!   contourfc                    t          d           ddlm} |dvrt          d          ||                                \  }}t          ||          } || j        | j        | j        fi || _	        ||
                                s || j        n|}|                    |           ||                                s || j        n|}|                    |           || _        |j        | _        | S )a  Plot visualization.

        Parameters
        ----------
        plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
            Plotting method to call when plotting the response. Please refer
            to the following matplotlib documentation for details:
            :func:`contourf <matplotlib.pyplot.contourf>`,
            :func:`contour <matplotlib.pyplot.contour>`,
            :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.

        ax : Matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        xlabel : str, default=None
            Overwrite the x-axis label.

        ylabel : str, default=None
            Overwrite the y-axis label.

        **kwargs : dict
            Additional keyword arguments to be passed to the `plot_method`.

        Returns
        -------
        display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
            Object that stores computed values.
        zDecisionBoundaryDisplay.plotr   Nr-   contour
pcolormeshz:plot_method must be 'contourf', 'contour', or 'pcolormesh')r   matplotlib.pyplotpyplotr   subplotsgetattrr(   r)   r*   surface_
get_xlabelr$   
set_xlabel
get_ylabelr%   
set_ylabelax_figurefigure_)	r+   plot_methodaxr$   r%   kwargsplt_	plot_funcs	            r   plotzDecisionBoundaryDisplay.plot   s   < 	!!?@@@''''''CCCL   :LLNNEArB,,	!	$(DHdmNNvNNR]]__$*NT[[FMM&!!!R]]__$*NT[[FMM&!!!yr!   d   g      ?r   )grid_resolutionepsr>   r   r   r$   r%   r?   c                   t          | j         d           t          |           |dk    st          d| d          |dk    st          d| d          d}||vr+d                    |          }t          d	| d
| d          t          |          }|dk    rt          d| d          t          |dd          t          |dd          }}|                                |z
  |                                |z   }}|                                |z
  |                                |z   }}t          j
        t          j        |||          t          j        |||                    \  }}t          j        |                                |                                f         }t          |          st          |          r,t!          |          }|                    |||j                  }t'          |||          }	 t)          ||||d          \  }}}n?# t          $ r2}dt+          |          v rt          d| d|j                   | d}~ww xY w|dk    r?t/          |d          r/t1                      }|j        |_        |                    |          }|j        dk    rMt7          |          rt          d          t          j        |j        |k              d         }|dd|f         }|t/          |d          r|j        d         nd}|	t/          |d          r|j        d         nd}	 | |||                    |j                  ||	          }  | j        d|
|d|S )a  Plot decision boundary given an estimator.

        Read more in the :ref:`User Guide <visualizations>`.

        Parameters
        ----------
        estimator : object
            Trained estimator used to plot the decision boundary.

        X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
            Input data that should be only 2-dimensional.

        grid_resolution : int, default=100
            Number of grid points to use for plotting decision boundary.
            Higher values will make the plot look nicer but be slower to
            render.

        eps : float, default=1.0
            Extends the minimum and maximum values of X for evaluating the
            response function.

        plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
            Plotting method to call when plotting the response. Please refer
            to the following matplotlib documentation for details:
            :func:`contourf <matplotlib.pyplot.contourf>`,
            :func:`contour <matplotlib.pyplot.contour>`,
            :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.

        response_method : {'auto', 'predict_proba', 'decision_function',                 'predict'}, default='auto'
            Specifies whether to use :term:`predict_proba`,
            :term:`decision_function`, :term:`predict` as the target response.
            If set to 'auto', the response method is tried in the following order:
            :term:`decision_function`, :term:`predict_proba`, :term:`predict`.
            For multiclass problems, :term:`predict` is selected when
            `response_method="auto"`.

        class_of_interest : int, float, bool or str, default=None
            The class considered when plotting the decision. If None,
            `estimator.classes_[1]` is considered as the positive class
            for binary classifiers. Must have an explicit value for
            multiclass classifiers when `response_method` is 'predict_proba'
            or 'decision_function'.

            .. versionadded:: 1.4

        xlabel : str, default=None
            The label used for the x-axis. If `None`, an attempt is made to
            extract a label from `X` if it is a dataframe, otherwise an empty
            string is used.

        ylabel : str, default=None
            The label used for the y-axis. If `None`, an attempt is made to
            extract a label from `X` if it is a dataframe, otherwise an empty
            string is used.

        ax : Matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        **kwargs : dict
            Additional keyword arguments to be passed to the
            `plot_method`.

        Returns
        -------
        display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
            Object that stores the result.

        See Also
        --------
        DecisionBoundaryDisplay : Decision boundary visualization.
        sklearn.metrics.ConfusionMatrixDisplay.from_estimator : Plot the
            confusion matrix given an estimator, the data, and the label.
        sklearn.metrics.ConfusionMatrixDisplay.from_predictions : Plot the
            confusion matrix given the true and predicted labels.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import load_iris
        >>> from sklearn.linear_model import LogisticRegression
        >>> from sklearn.inspection import DecisionBoundaryDisplay
        >>> iris = load_iris()
        >>> X = iris.data[:, :2]
        >>> classifier = LogisticRegression().fit(X, iris.target)
        >>> disp = DecisionBoundaryDisplay.from_estimator(
        ...     classifier, X, response_method="predict",
        ...     xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
        ...     alpha=0.5,
        ... )
        >>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
        <...>
        >>> plt.show()
        z.from_estimator   z,grid_resolution must be greater than 1. Got z	 instead.r   z,eps must be greater than or equal to 0. Got r/   z, zplot_method must be one of z. Got r   z#n_features must be equal to 2. Got )axis)columnsT)r   	pos_labelreturn_response_method_usedzis not a valid labelzclass_of_interest=z+ is not a valid label: It should be one of Nr   r   z)Multi-output regressors are not supportedrK    r'   )r?   r>    ) r   __name__r   r   joinr   r   minmaxnpmeshgridlinspacec_ravelr   r   r	   create_containerrK   r    r   strr   r   r   	transformndimr   flatnonzeroreshapeshaperD   )!clsr   XrF   rG   r>   r   r   r$   r%   r?   r@   possible_plot_methodsavailable_methodsnum_featuresx0x1x0_minx0_maxx1_minx1_maxr(   r)   X_gridadapterr   r*   rB   response_method_usedexcencodercol_idxdisplays!                                    r   from_estimatorz&DecisionBoundaryDisplay.from_estimator   s5   ^ 	!CL!A!A!ABBB	"""""/#/ / /  
 axxMsMMM   !F333 $		*? @ @..? . .". . .  
 %Q''1MlMMM    11---~a/K/K/KBCCCC;K88K88
 
S
 syy{{CIIKK/0 	}Q// 	1!44G--	 .  F <(9
 
	0D 1+,01 1 1-Ha--  		 		 		%S11 !=): = =(1(:= =   		  9,,J1O1O,"nnG(1G((22H=AI&& N !LMMM
 nY%7;L%LMMaPG7
+H>%,Q	%:%:BQYq\\F>%,Q	%:%:BQYq\\F#%%ci00
 
 
 w|Er{EEfEEEs   H 
I)-II)r-   NNN)rP   
__module____qualname____doc__r,   rD   classmethodrr   rO   r!   r   r#   r#   G   s        G GR 6:$     5 5 5 5n  PF PF PF PF [PF PF PFr!   r#   )numpyrT   baser   preprocessingr   utilsr   utils._optional_dependenciesr   utils._responser   utils._set_outputr	   utils.validationr
   r   r   r   r   r    r#   rO   r!   r   <module>r      s                   ) ) ) ) ) ) # # # # # # D D D D D D 3 3 3 3 3 3 < < < < < <             / / /dYF YF YF YF YF YF YF YF YF YFr!   