§
    0Phƒ  ã                   óv   — d Z ddlmZ ddlmZmZmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZ ddlmZmZmZmZ g d¢ZdS )zßEvaluation metrics for cluster analysis results.

- Supervised evaluation uses a ground truth class values for each sample.
- Unsupervised evaluation does use ground truths and measures the "quality" of the
  model itself.
é   )Úconsensus_score)Úadjusted_mutual_info_scoreÚadjusted_rand_scoreÚcompleteness_scoreÚcontingency_matrixÚentropyÚexpected_mutual_informationÚfowlkes_mallows_scoreÚ"homogeneity_completeness_v_measureÚhomogeneity_scoreÚmutual_info_scoreÚnormalized_mutual_info_scoreÚpair_confusion_matrixÚ
rand_scoreÚv_measure_score)Úcalinski_harabasz_scoreÚdavies_bouldin_scoreÚsilhouette_samplesÚsilhouette_score)r   r   r   r   r   r   r   r	   r   r   r   r   r
   r   r   r   r   r   r   N)Ú__doc__Ú
_biclusterr   Ú_supervisedr   r   r   r   r   r	   r
   r   r   r   r   r   r   r   Ú_unsupervisedr   r   r   r   Ú__all__© ó    ú`/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/sklearn/metrics/cluster/__init__.pyú<module>r      s  ððð ð (Ð 'Ð 'Ð 'Ð 'Ð 'ðð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ð ðð ð €€€r   