
    0Ph                     .    d dl Z d dlZd dlmZ d Zd ZdS )    N)suppressc                     t          | t          j                   o-t          | t          j                  ot	          j        |           S )a  Test if x is NaN.

    This function is meant to overcome the issue that np.isnan does not allow
    non-numerical types as input, and that np.nan is not float('nan').

    Parameters
    ----------
    x : any type
        Any scalar value.

    Returns
    -------
    bool
        Returns true if x is NaN, and false otherwise.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils._missing import is_scalar_nan
    >>> is_scalar_nan(np.nan)
    True
    >>> is_scalar_nan(float("nan"))
    True
    >>> is_scalar_nan(None)
    False
    >>> is_scalar_nan("")
    False
    >>> is_scalar_nan([np.nan])
    False
    )
isinstancenumbersIntegralRealmathisnan)xs    V/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/sklearn/utils/_missing.pyis_scalar_nanr   	   sA    @ q'*+++ 	q',''	JqMM    c                 r    t          t                    5  ddlm} | |u cddd           S # 1 swxY w Y   dS )a  Test if x is pandas.NA.

    We intentionally do not use this function to return `True` for `pd.NA` in
    `is_scalar_nan`, because estimators that support `pd.NA` are the exception
    rather than the rule at the moment. When `pd.NA` is more universally
    supported, we may reconsider this decision.

    Parameters
    ----------
    x : any type

    Returns
    -------
    boolean
    r   )NANF)r   ImportErrorpandasr   )r   r   s     r   is_pandas_nar   /   s      
+		  Bw               
 5s   
,00)r	   r   
contextlibr   r   r    r   r   <module>r      sT           # # #L    r   