
    M/Ph                     ^    d dl Z d dlZej                            d          d             ZdS )    NT)strictc            	         ddl m}  dd l}ddlm} |                                } |d                              t          |                    d|                    t          |                    d|                              }t          |          } |             }| 	                                 |j
        }t          j        d d          }t          j        d           	 t          |                                          }|t          _        n# |t          _        w xY w|}	dd l}
d	                    d
 |	                    d	          D                       }	|
j                            |	|k               d S )Nr   )TestOLS)Templatea       Summary of Regression Results
=======================================
| Dependent Variable:                y|
| Model:                           OLS|
| Method:                Least Squares|
| Date:               $XXcurrentXdateXX|
| Time:                       $XXtimeXXX|
| # obs:                          16.0|
| Df residuals:                    9.0|
| Df model:                        6.0|
==============================================================================
|                   coefficient     std. error    t-statistic          prob. |
------------------------------------------------------------------------------
| x1                      15.06          84.91         0.1774         0.8631 |
| x2                   -0.03582        0.03349        -1.0695         0.3127 |
| x3                     -2.020         0.4884        -4.1364         0.0025 |
| x4                     -1.033         0.2143        -4.8220         0.0009 |
| x5                   -0.05110         0.2261        -0.2261         0.8262 |
| x6                      1829.          455.5         4.0159         0.0030 |
| const              -3.482e+06      8.904e+05        -3.9108         0.0036 |
==============================================================================
|                          Models stats                      Residual stats  |
------------------------------------------------------------------------------
| R-squared:                     0.9955   Durbin-Watson:              2.559  |
| Adjusted R-squared:            0.9925   Omnibus:                   0.7486  |
| F-statistic:                    330.3   Prob(Omnibus):             0.6878  |
| Prob (F-statistic):         4.984e-10   JB:                        0.6841  |
| Log likelihood:                -109.6   Prob(JB):                  0.7103  |
| AIC criterion:                  233.2   Skew:                      0.4200  |
| BIC criterion:                  238.6   Kurtosis:                   2.434  |
------------------------------------------------------------------------------z%a, %d %b %Yz%H:%M:%S)XXcurrentXdateXX	XXtimeXXXignore
c              3   >   K   | ]}|                                 V  d S )N)rstrip).0lines     h/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/statsmodels/iolib/tests/test_summary_old.py	<genexpr>z*test_regression_summary.<locals>.<genexpr>E   s*      DDt{{}}DDDDDD    ),statsmodels.regression.tests.test_regressionr   timestringr   	localtime
substitutestrstrftimesetup_classres1warningsfilterssimplefiltersummary_oldnumpyjoinsplittestingassert_)r   r   r   tdesiredaregressionresultsoriginal_filters	r_summaryactualnps              r   test_regression_summaryr,      s   
 EDDDDDKKKAhR   @ *DMM.$C$C D DT]]:a8899  ; ;A D 'llG'))KG'*(###,++--..	++++++ FYYDDd1C1CDDDDDF Jv()))))s   $!D D )r   pytestmarkxfailr,    r   r   <module>r1      sU      $G* G*  G* G* G*r   