
    .Ph                        d Z ddlZddlmZ ddlmZ ddlmZ ddlm	Z	m
Z
 ddlmZmZmZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZ dd	lmZm Z m!Z!m"Z" dd
lm#Z#m$Z$m%Z% ddl&m'Z' g dZ( e)            Z*	  e+d            e
e+d          Z,n# e-$ r e+Z,Y nw xY w	 ddlm.Z/ n# e0$ r d Z/Y nw xY wd Z1dUdZ2d Z3dVdZ4dVdZ5dVdZ6e7fdZ8d Z9e9Z:d Z;d Z<d Z=dVdZ>d Z?	 ddlm@ZA d Z@e?j         e@_         n# e0$ r e?Z@Y nw xY w G d  d!eB          ZCd" ZDd# ZEdWd%ZFd& ZGd' ZHd( ZIdVd)ZJdVd*ZKdXd,ZLdVd-ZMdYd.ZNd/d0d1ZOdVd2ZPd3 ZQd4 ZRd5 ZSd6 ZTd7 ZUd8 ZVd9 ZWd: ZXd; ZYd< ZZd= Z[d> Z\dZd?Z]d@ Z^d+ddAZ_e'dBk    rddClm`Za d+ddDZ`ne_Z`e_j         e`_         dE ZbdF ZcdG ZddH Ze ef e^dI                    ZgdJ ZhdK ZidL ZjdM ZkdN Zlg dOZme	dP             ZndQ Zo ejp                    j#        ZqdR ZrdS ZsdT ZtdS )[a  Imported from the recipes section of the itertools documentation.

All functions taken from the recipes section of the itertools library docs
[1]_.
Some backward-compatible usability improvements have been made.

.. [1] http://docs.python.org/library/itertools.html#recipes

    N)dequesuppress)Sized)	lru_cachepartial)
accumulatechaincombinationscompresscountcyclegroupbyisliceproductrepeatstarmapteezip_longest)prodcombisqrtgcd)mulnot_
itemgettergetitem)	randrangesamplechoice)
hexversion)1	all_equalbatchedbefore_and_afterconsumeconvolve
dotproduct
first_truefactorflattengrouperis_primeiter_except
iter_indexloopsmatmulmultinomialncyclesnthnth_combinationpadnonepad_nonepairwise	partitionpolynomial_evalpolynomial_from_rootspolynomial_derivativepowersetprependquantifyreshape#random_combination_with_replacementrandom_combinationrandom_permutationrandom_product
repeatfunc
roundrobinsievesliding_window	subslicessum_of_squarestabulatetailtaketotient	transpose
triplewiseuniqueunique_everseenunique_justseenTstrict)sumprodc                 "    t          | |          S N)r'   )xys     V/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/more_itertools/recipes.py<lambda>r[   i   s    Jq!,,     c                 <    t          t          ||                     S )zReturn first *n* items of the *iterable* as a list.

        >>> take(3, range(10))
        [0, 1, 2]

    If there are fewer than *n* items in the iterable, all of them are
    returned.

        >>> take(10, range(3))
        [0, 1, 2]

    )listr   niterables     rZ   rL   rL   l   s     x##$$$r\   c                 <    t          | t          |                    S )a  Return an iterator over the results of ``func(start)``,
    ``func(start + 1)``, ``func(start + 2)``...

    *func* should be a function that accepts one integer argument.

    If *start* is not specified it defaults to 0. It will be incremented each
    time the iterator is advanced.

        >>> square = lambda x: x ** 2
        >>> iterator = tabulate(square, -3)
        >>> take(4, iterator)
        [9, 4, 1, 0]

    )mapr   )functionstarts     rZ   rJ   rJ   |   s     xu&&&r\   c           	          t          |t                    r/t          |t          dt	          |          | z
            d          S t          t          ||                     S )zReturn an iterator over the last *n* items of *iterable*.

    >>> t = tail(3, 'ABCDEFG')
    >>> list(t)
    ['E', 'F', 'G']

    r   Nmaxlen)
isinstancer   r   maxleniterr   r_   s     rZ   rK   rK      sX     (E"" /hAs8}}q'8 9 94@@@E(1---...r\   c                 n    |t          | d           dS t          t          | ||          d           dS )aX  Advance *iterable* by *n* steps. If *n* is ``None``, consume it
    entirely.

    Efficiently exhausts an iterator without returning values. Defaults to
    consuming the whole iterator, but an optional second argument may be
    provided to limit consumption.

        >>> i = (x for x in range(10))
        >>> next(i)
        0
        >>> consume(i, 3)
        >>> next(i)
        4
        >>> consume(i)
        >>> next(i)
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        StopIteration

    If the iterator has fewer items remaining than the provided limit, the
    whole iterator will be consumed.

        >>> i = (x for x in range(3))
        >>> consume(i, 5)
        >>> next(i)
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        StopIteration

    Nr   rg   )r   nextr   )iteratorr`   s     rZ   r%   r%      sG    @ 	yhq!!!!!! 	VHa##T*****r\   c                 @    t          t          | |d          |          S )zReturns the nth item or a default value.

    >>> l = range(10)
    >>> nth(l, 3)
    3
    >>> nth(l, 20, "zebra")
    'zebra'

    N)rn   r   )ra   r`   defaults      rZ   r3   r3      s      xD))7333r\   c                 D    t          | |          }|D ]}|D ]}  dS  dS dS )a  
    Returns ``True`` if all the elements are equal to each other.

        >>> all_equal('aaaa')
        True
        >>> all_equal('aaab')
        False

    A function that accepts a single argument and returns a transformed version
    of each input item can be specified with *key*:

        >>> all_equal('AaaA', key=str.casefold)
        True
        >>> all_equal([1, 2, 3], key=lambda x: x < 10)
        True

    FT)r   )ra   keyro   firstseconds        rZ   r"   r"      sF    $ x%%H   	 	F555tt4r\   c                 <    t          t          ||                     S )zcReturn the how many times the predicate is true.

    >>> quantify([True, False, True])
    2

    )sumrc   )ra   preds     rZ   r>   r>      s     s4""###r\   c                 <    t          | t          d                    S )a   Returns the sequence of elements and then returns ``None`` indefinitely.

        >>> take(5, pad_none(range(3)))
        [0, 1, 2, None, None]

    Useful for emulating the behavior of the built-in :func:`map` function.

    See also :func:`padded`.

    N)r
   r   ra   s    rZ   r6   r6      s     6$<<(((r\   c                 `    t          j        t          t          |           |                    S )zvReturns the sequence elements *n* times

    >>> list(ncycles(["a", "b"], 3))
    ['a', 'b', 'a', 'b', 'a', 'b']

    )r
   from_iterabler   tuplera   r`   s     rZ   r2   r2   
  s%     veHooq99:::r\   c                 H    t          t          t          | |                    S )zReturns the dot product of the two iterables.

    >>> dotproduct([10, 15, 12], [0.65, 0.80, 1.25])
    33.5
    >>> 10 * 0.65 + 15 * 0.80 + 12 * 1.25
    33.5

    In Python 3.12 and later, use ``math.sumprod()`` instead.
    )rw   rc   r   )vec1vec2s     rZ   r'   r'     s     s3d##$$$r\   c                 *    t          j        |           S )zReturn an iterator flattening one level of nesting in a list of lists.

        >>> list(flatten([[0, 1], [2, 3]]))
        [0, 1, 2, 3]

    See also :func:`collapse`, which can flatten multiple levels of nesting.

    )r
   r|   )listOfListss    rZ   r*   r*   !  s     {+++r\   c                 |    |t          | t          |                    S t          | t          ||                    S )aG  Call *func* with *args* repeatedly, returning an iterable over the
    results.

    If *times* is specified, the iterable will terminate after that many
    repetitions:

        >>> from operator import add
        >>> times = 4
        >>> args = 3, 5
        >>> list(repeatfunc(add, times, *args))
        [8, 8, 8, 8]

    If *times* is ``None`` the iterable will not terminate:

        >>> from random import randrange
        >>> times = None
        >>> args = 1, 11
        >>> take(6, repeatfunc(randrange, times, *args))  # doctest:+SKIP
        [2, 4, 8, 1, 8, 4]

    )r   r   )functimesargss      rZ   rD   rD   -  s9    , }tVD\\***4e,,---r\   c                 f    t          |           \  }}t          |d           t          ||          S )zReturns an iterator of paired items, overlapping, from the original

    >>> take(4, pairwise(count()))
    [(0, 1), (1, 2), (2, 3), (3, 4)]

    On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`.

    Nr   rn   zip)ra   abs      rZ   	_pairwiser   H  s.     x==DAqDMMMq!99r\   )r7   c                      t          |           S rW   )itertools_pairwiserz   s    rZ   r7   r7   \  s    !(+++r\   c                         e Zd Zd fd	Z xZS )UnequalIterablesErrorNc                 l    d}|| dj         | z  }t                                          |           d S )Nz Iterables have different lengthsz/: index 0 has length {}; index {} has length {})formatsuper__init__)selfdetailsmsg	__class__s      rZ   r   zUnequalIterablesError.__init__c  sI    0MEM C 	r\   rW   )__name__
__module____qualname__r   __classcell__)r   s   @rZ   r   r   b  s=                 r\   r   c              #   r   K   t          | dt          iD ]"}|D ]}|t          u rt                      |V  #d S )N	fillvalue)r   _markerr   )	iterablescombovals      rZ   _zip_equal_generatorr   m  s`      i;7;;   	. 	.Cg~~+--- 	 r\   c                  
   	 t          | d                   }t          | dd          d          D ]-\  }}t          |          }||k    rt          |||f          .t          |  S # t          $ r t          |           cY S w xY w)Nr      )r   )rk   	enumerater   r   	TypeErrorr   )r   
first_sizeiitsizes        rZ   
_zip_equalr   u  s    /1&&
y}a00 	K 	KEArr77Dz!!+ZD4IJJJJ " I  / / /#I...../s   A#A& &BBfillc                     t          |           g|z  }|dk    rt          |d|iS |dk    r	t          | S |dk    r	t          | S t	          d          )a  Group elements from *iterable* into fixed-length groups of length *n*.

    >>> list(grouper('ABCDEF', 3))
    [('A', 'B', 'C'), ('D', 'E', 'F')]

    The keyword arguments *incomplete* and *fillvalue* control what happens for
    iterables whose length is not a multiple of *n*.

    When *incomplete* is `'fill'`, the last group will contain instances of
    *fillvalue*.

    >>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x'))
    [('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]

    When *incomplete* is `'ignore'`, the last group will not be emitted.

    >>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x'))
    [('A', 'B', 'C'), ('D', 'E', 'F')]

    When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised.

    >>> iterator = grouper('ABCDEFG', 3, incomplete='strict')
    >>> list(iterator)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    UnequalIterablesError

    r   r   rT   ignorez Expected fill, strict, or ignore)rl   r   r   r   
ValueError)ra   r`   
incompleter   	iteratorss        rZ   r+   r+     so    : h 1$IVI;;;;X9%%XI;<<<r\   c               '      K   t          t          |           }t          t          |           dd          D ]:}t	          t          ||                    }t          t          |          E d{V  ;dS )aG  Visit input iterables in a cycle until each is exhausted.

        >>> list(roundrobin('ABC', 'D', 'EF'))
        ['A', 'D', 'E', 'B', 'F', 'C']

    This function produces the same output as :func:`interleave_longest`, but
    may perform better for some inputs (in particular when the number of
    iterables is small).

    r   N)rc   rl   rangerk   r   r   rn   )r   r   
num_actives      rZ   rE   rE     s~       D)$$IC	NNAr22 ( (
&J7788	tY''''''''''( (r\   c                     | t           } t          |d          \  }}}t          t          | |                    \  }}t          |t          t          |                    t          ||          fS )a  
    Returns a 2-tuple of iterables derived from the input iterable.
    The first yields the items that have ``pred(item) == False``.
    The second yields the items that have ``pred(item) == True``.

        >>> is_odd = lambda x: x % 2 != 0
        >>> iterable = range(10)
        >>> even_items, odd_items = partition(is_odd, iterable)
        >>> list(even_items), list(odd_items)
        ([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])

    If *pred* is None, :func:`bool` is used.

        >>> iterable = [0, 1, False, True, '', ' ']
        >>> false_items, true_items = partition(None, iterable)
        >>> list(false_items), list(true_items)
        ([0, False, ''], [1, True, ' '])

    N   )boolr   rc   r   r   )rx   ra   t1t2pp1p2s          rZ   r8   r8     sc    ( |Ha  IBAT1FBRT2''"b)9)9::r\   c                     t          |           t          j        fdt          t	                    dz             D                       S )a1  Yields all possible subsets of the iterable.

        >>> list(powerset([1, 2, 3]))
        [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

    :func:`powerset` will operate on iterables that aren't :class:`set`
    instances, so repeated elements in the input will produce repeated elements
    in the output.

        >>> seq = [1, 1, 0]
        >>> list(powerset(seq))
        [(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]

    For a variant that efficiently yields actual :class:`set` instances, see
    :func:`powerset_of_sets`.
    c              3   8   K   | ]}t          |          V  d S rW   )r   ).0rss     rZ   	<genexpr>zpowerset.<locals>.<genexpr>  s-      MMa|Aq11MMMMMMr\   r   )r^   r
   r|   r   rk   )ra   r   s    @rZ   r<   r<     sH    " 	XAMMMM5Q!;L;LMMMMMMr\   c              #      K   t                      }|j        }g }|j        }|du}| D ]H}|r ||          n|}	 ||vr ||           |V  &# t          $ r ||vr ||           |V  Y Ew xY wdS )a  
    Yield unique elements, preserving order.

        >>> list(unique_everseen('AAAABBBCCDAABBB'))
        ['A', 'B', 'C', 'D']
        >>> list(unique_everseen('ABBCcAD', str.lower))
        ['A', 'B', 'C', 'D']

    Sequences with a mix of hashable and unhashable items can be used.
    The function will be slower (i.e., `O(n^2)`) for unhashable items.

    Remember that ``list`` objects are unhashable - you can use the *key*
    parameter to transform the list to a tuple (which is hashable) to
    avoid a slowdown.

        >>> iterable = ([1, 2], [2, 3], [1, 2])
        >>> list(unique_everseen(iterable))  # Slow
        [[1, 2], [2, 3]]
        >>> list(unique_everseen(iterable, key=tuple))  # Faster
        [[1, 2], [2, 3]]

    Similarly, you may want to convert unhashable ``set`` objects with
    ``key=frozenset``. For ``dict`` objects,
    ``key=lambda x: frozenset(x.items())`` can be used.

    N)setaddappendr   )	ra   rs   seensetseenset_addseenlistseenlist_adduse_keyelementks	            rZ   rQ   rQ     s      6 eeG+KH?LoG 	 	#0CCLLL	A 	 	 	  Q		 	s   AA-,A-c           
          |*t          t          d          t          |                     S t          t          t          t          d          t          | |                              S )zYields elements in order, ignoring serial duplicates

    >>> list(unique_justseen('AAAABBBCCDAABBB'))
    ['A', 'B', 'C', 'D', 'A', 'B']
    >>> list(unique_justseen('ABBCcAD', str.lower))
    ['A', 'B', 'C', 'A', 'D']

    Nr   r   )rc   r   r   rn   )ra   rs   s     rZ   rR   rR     sQ     {:a=='("3"3444tSA#(>(>??@@@r\   Fc                 H    t          | ||          }t          ||          S )a  Yields unique elements in sorted order.

    >>> list(unique([[1, 2], [3, 4], [1, 2]]))
    [[1, 2], [3, 4]]

    *key* and *reverse* are passed to :func:`sorted`.

    >>> list(unique('ABBcCAD', str.casefold))
    ['A', 'B', 'c', 'D']
    >>> list(unique('ABBcCAD', str.casefold, reverse=True))
    ['D', 'c', 'B', 'A']

    The elements in *iterable* need not be hashable, but they must be
    comparable for sorting to work.
    )rs   reverse)rs   )sortedrR   )ra   rs   r   	sequenceds       rZ   rP   rP   ,  s+      xS':::I9#....r\   c              #   x   K   t          |          5  | |            V  	  |             V  # 1 swxY w Y   dS )a  Yields results from a function repeatedly until an exception is raised.

    Converts a call-until-exception interface to an iterator interface.
    Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
    to end the loop.

        >>> l = [0, 1, 2]
        >>> list(iter_except(l.pop, IndexError))
        [2, 1, 0]

    Multiple exceptions can be specified as a stopping condition:

        >>> l = [1, 2, 3, '...', 4, 5, 6]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        [7, 6, 5]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        [4, 3, 2]
        >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
        []

    Nr   )r   	exceptionrt   s      rZ   r-   r-   @  s      , 
)		  %''MMM	$&&LLL	         s   /33c                 >    t          t          ||           |          S )a  
    Returns the first true value in the iterable.

    If no true value is found, returns *default*

    If *pred* is not None, returns the first item for which
    ``pred(item) == True`` .

        >>> first_true(range(10))
        1
        >>> first_true(range(10), pred=lambda x: x > 5)
        6
        >>> first_true(range(10), default='missing', pred=lambda x: x > 9)
        'missing'

    )rn   filter)ra   rq   rx   s      rZ   r(   r(   ]  s    " tX&&000r\   r   r   c                 R    d |D             | z  }t          d |D                       S )a  Draw an item at random from each of the input iterables.

        >>> random_product('abc', range(4), 'XYZ')  # doctest:+SKIP
        ('c', 3, 'Z')

    If *repeat* is provided as a keyword argument, that many items will be
    drawn from each iterable.

        >>> random_product('abcd', range(4), repeat=2)  # doctest:+SKIP
        ('a', 2, 'd', 3)

    This equivalent to taking a random selection from
    ``itertools.product(*args, **kwarg)``.

    c                 ,    g | ]}t          |          S  r}   r   pools     rZ   
<listcomp>z"random_product.<locals>.<listcomp>  s    ***TU4[[***r\   c              3   4   K   | ]}t          |          V  d S rW   )r    r   s     rZ   r   z!random_product.<locals>.<genexpr>  s(      00$000000r\   r   )r   r   poolss      rZ   rC   rC   q  s9      +*T***V3E00%000000r\   c                     t          |           }|t          |          n|}t          t          ||                    S )ab  Return a random *r* length permutation of the elements in *iterable*.

    If *r* is not specified or is ``None``, then *r* defaults to the length of
    *iterable*.

        >>> random_permutation(range(5))  # doctest:+SKIP
        (3, 4, 0, 1, 2)

    This equivalent to taking a random selection from
    ``itertools.permutations(iterable, r)``.

    )r}   rk   r   )ra   r   r   s      rZ   rB   rB     s8     ??DYD			AAa!!!r\   c                     t          |           t                    }t          t          t	          |          |                    }t          fd|D                       S )zReturn a random *r* length subsequence of the elements in *iterable*.

        >>> random_combination(range(5), 3)  # doctest:+SKIP
        (2, 3, 4)

    This equivalent to taking a random selection from
    ``itertools.combinations(iterable, r)``.

    c              3   (   K   | ]}|         V  d S rW   r   r   r   r   s     rZ   r   z%random_combination.<locals>.<genexpr>  '      **Qa******r\   )r}   rk   r   r   r   )ra   r   r`   indicesr   s       @rZ   rA   rA     s[     ??DD		AVE!HHa(())G****'******r\   c                     t          |           t                    t          fdt          |          D                       }t          fd|D                       S )aS  Return a random *r* length subsequence of elements in *iterable*,
    allowing individual elements to be repeated.

        >>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
        (0, 0, 1, 2, 2)

    This equivalent to taking a random selection from
    ``itertools.combinations_with_replacement(iterable, r)``.

    c              3   6   K   | ]}t                    V  d S rW   )r   r   r   r`   s     rZ   r   z6random_combination_with_replacement.<locals>.<genexpr>  s)      44aYq\\444444r\   c              3   (   K   | ]}|         V  d S rW   r   r   s     rZ   r   z6random_combination_with_replacement.<locals>.<genexpr>  r   r\   )r}   rk   r   r   )ra   r   r   r`   r   s      @@rZ   r@   r@     sg     ??DD		A444458844444G****'******r\   c                    t          |           }t          |          }|dk     s||k    rt          d}t          |||z
            }t	          d|dz             D ]}|||z
  |z   z  |z  }|dk     r||z  }|dk     s||k    rt
          g }|rS||z  |z  |dz
  |dz
  }}}||k    r||z  }|||z
  z  |z  |dz
  }}||k    |                    |d|z
                      |St          |          S )a  Equivalent to ``list(combinations(iterable, r))[index]``.

    The subsequences of *iterable* that are of length *r* can be ordered
    lexicographically. :func:`nth_combination` computes the subsequence at
    sort position *index* directly, without computing the previous
    subsequences.

        >>> nth_combination(range(5), 3, 5)
        (0, 3, 4)

    ``ValueError`` will be raised If *r* is negative or greater than the length
    of *iterable*.
    ``IndexError`` will be raised if the given *index* is invalid.
    r   r   r   )r}   rk   r   minr   
IndexErrorr   )	ra   r   indexr   r`   cr   r   results	            rZ   r4   r4     s8    ??DD		A	A1q55	AAq1uA1a!e__ ! !QOq qyy
		uzzF
 $a%1*a!eQUa1qjjQJEA;!#QUqA qjj 	d26l###  $ ==r\   c                 $    t          | g|          S )a  Yield *value*, followed by the elements in *iterator*.

        >>> value = '0'
        >>> iterator = ['1', '2', '3']
        >>> list(prepend(value, iterator))
        ['0', '1', '2', '3']

    To prepend multiple values, see :func:`itertools.chain`
    or :func:`value_chain`.

    )r
   )valuero   s     rZ   r=   r=     s     %(###r\   c              #     K   t          |          ddd         }t          |          }t          dg|          |z  }t          | t	          d|dz
                      D ])}|                    |           t          ||          V  *dS )u}  Discrete linear convolution of two iterables.
    Equivalent to polynomial multiplication.

    For example, multiplying ``(x² -x - 20)`` by ``(x - 3)``
    gives ``(x³ -4x² -17x + 60)``.

        >>> list(convolve([1, -1, -20], [1, -3]))
        [1, -4, -17, 60]

    Examples of popular kinds of kernels:

    * The kernel ``[0.25, 0.25, 0.25, 0.25]`` computes a moving average.
      For image data, this blurs the image and reduces noise.
    * The kernel ``[1/2, 0, -1/2]`` estimates the first derivative of
      a function evaluated at evenly spaced inputs.
    * The kernel ``[1, -2, 1]`` estimates the second derivative of a
      function evaluated at evenly spaced inputs.

    Convolutions are mathematically commutative; however, the inputs are
    evaluated differently.  The signal is consumed lazily and can be
    infinite. The kernel is fully consumed before the calculations begin.

    Supports all numeric types: int, float, complex, Decimal, Fraction.

    References:

    * Article:  https://betterexplained.com/articles/intuitive-convolution/
    * Video by 3Blue1Brown:  https://www.youtube.com/watch?v=KuXjwB4LzSA

    Nr   r   rg   r   )r}   rk   r   r
   r   r   _sumprod)signalkernelr`   windowrX   s        rZ   r&   r&     s      F 6]]44R4 FFAA3q!!!A%F66!QU++,, ' 'avv&&&&&&' 'r\   c                 p     t                    g  fd}t                    } |            |fS )a  A variant of :func:`takewhile` that allows complete access to the
    remainder of the iterator.

         >>> it = iter('ABCdEfGhI')
         >>> all_upper, remainder = before_and_after(str.isupper, it)
         >>> ''.join(all_upper)
         'ABC'
         >>> ''.join(remainder) # takewhile() would lose the 'd'
         'dEfGhI'

    Note that the first iterator must be fully consumed before the second
    iterator can generate valid results.
    c               3   d   K   D ])}  |           r| V                       |             d S d S rW   )r   )elemr   	predicate
transitions    rZ   true_iteratorz'before_and_after.<locals>.true_iterator-  sV       	 	Dy 



!!$'''	 	r\   )rl   r
   )r   r   r   remainder_iteratorr   s   ``  @rZ   r$   r$     s^     
bBJ       z2..=??...r\   c                     t          | d          \  }}}t          |d           t          |d           t          |d           t          |||          S )zReturn overlapping triplets from *iterable*.

    >>> list(triplewise('ABCDE'))
    [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')]

    r   Nr   )ra   r   r   t3s       rZ   rO   rO   =  sP     Xq!!JBBTNNNTNNNTNNNr2r??r\   c                     t          | |          }t          |          D ]$\  }}t          t          |||          d            %t	          | S rW   )r   r   rn   r   r   )ra   r`   r   r   ro   s        rZ   _sliding_window_islicer  M  sU    Ha  I ++ + +8VHa##T****	?r\   c              #      K   t          |           }t          t          ||dz
            |          }|D ](}|                    |           t	          |          V  )d S )Nr   rg   )rl   r   r   r   r}   )ra   r`   ro   r   rX   s        rZ   _sliding_window_dequer  U  sq      H~~H6(AE**1555F  aFmm r\   c                     |dk    rt          | |          S |dk    rt          | |          S |dk    rt          |           S |dk    rt          |           S t	          d|           )aY  Return a sliding window of width *n* over *iterable*.

        >>> list(sliding_window(range(6), 4))
        [(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)]

    If *iterable* has fewer than *n* items, then nothing is yielded:

        >>> list(sliding_window(range(3), 4))
        []

    For a variant with more features, see :func:`windowed`.
          r   zn should be at least one, not )r  r  r7   r   r   r~   s     rZ   rG   rG   ^  sy     	2vv$Xq111	
Q%h222	
a!!!	
a8}}=!==>>>r\   c           
          t          |           }t          t          t          t	          t          |          dz             d                    }t          t          t          |          |          S )zReturn all contiguous non-empty subslices of *iterable*.

        >>> list(subslices('ABC'))
        [['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']]

    This is similar to :func:`substrings`, but emits items in a different
    order.
    r   r
  )	r^   r   slicer   r   rk   rc   r   r   )ra   seqslicess      rZ   rH   rH   w  sR     x..CULs3xx!|)<)<a@@AAFwsV,,,r\   c                 V    dg}| D ]"}t          t          |d| f                    }#|S )u  Compute a polynomial's coefficients from its roots.

    >>> roots = [5, -4, 3]            # (x - 5) * (x + 4) * (x - 3)
    >>> polynomial_from_roots(roots)  # x³ - 4 x² - 17 x + 60
    [1, -4, -17, 60]

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )r^   r&   )rootspolyroots      rZ   r:   r:     s>     3D 0 0HTAu:..//Kr\   c              #   :  K   t          | dd          }|7t          | ||          }t          ||          D ]\  }}||u s||k    r|V  dS |t          |           n|}|dz
  }t	          t
                    5  	  |||dz   |          x}V  # 1 swxY w Y   dS )a  Yield the index of each place in *iterable* that *value* occurs,
    beginning with index *start* and ending before index *stop*.


    >>> list(iter_index('AABCADEAF', 'A'))
    [0, 1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 1))  # start index is inclusive
    [1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 1, 7))  # stop index is not inclusive
    [1, 4]

    The behavior for non-scalar *values* matches the built-in Python types.

    >>> list(iter_index('ABCDABCD', 'AB'))
    [0, 4]
    >>> list(iter_index([0, 1, 2, 3, 0, 1, 2, 3], [0, 1]))
    []
    >>> list(iter_index([[0, 1], [2, 3], [0, 1], [2, 3]], [0, 1]))
    [0, 2]

    See :func:`locate` for a more general means of finding the indexes
    associated with particular values.

    r   Nr   )getattrr   r   rk   r   r   )ra   r   re   stop	seq_indexro   r   r   s           rZ   r.   r.     s     2 '400I(E400#He44 	 	JAw%7e#3#3	 	
 !%s8}}}$AIj!! 	; 	;;%IeQUD999q:::;	; 	; 	; 	; 	; 	; 	; 	; 	; 	;s   9BBBc              #     K   | dk    rdV  d}t          d          | dz  z  }t          |d|t          |           dz             D ]_}t          |d|||z            E d{V  t          t	          t          ||z  | ||z                                 |||z  | ||z   <   ||z  }`t          |d|          E d{V  dS )zeYield the primes less than n.

    >>> list(sieve(30))
    [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

    r
  r   )r   r   r   )r  N)	bytearrayr.   r   bytesrk   r   )r`   re   datar   s       rZ   rF   rF     s       	1uuEVQ'DaU1XX\:::  dAua!e444444444"'E!a%AE,B,B(C(C"D"DQUQQA$5)))))))))))r\   c             #   "  K   |dk     rt          d          t          |           }t          t          ||                    x}rI|r"t	          |          |k    rt          d          |V  t          t          ||                    x}GdS dS )a  Batch data into tuples of length *n*. If the number of items in
    *iterable* is not divisible by *n*:
    * The last batch will be shorter if *strict* is ``False``.
    * :exc:`ValueError` will be raised if *strict* is ``True``.

    >>> list(batched('ABCDEFG', 3))
    [('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)]

    On Python 3.13 and above, this is an alias for :func:`itertools.batched`.
    r   zn must be at least onezbatched(): incomplete batchN)r   rl   r}   r   rk   )ra   r`   rT   ro   batchs        rZ   _batchedr    s       	1uu1222H~~H!,,--
-%  	<c%jjAoo:;;; !,,--
-%     r\   i )r#   c                &    t          | ||          S )NrS   )itertools_batched)ra   r`   rT   s      rZ   r#   r#     s     1V<<<<r\   c                     t          |  S )a  Swap the rows and columns of the input matrix.

    >>> list(transpose([(1, 2, 3), (11, 22, 33)]))
    [(1, 11), (2, 22), (3, 33)]

    The caller should ensure that the dimensions of the input are compatible.
    If the input is empty, no output will be produced.
    )_zip_strictr   s    rZ   rN   rN     s     r\   c                 F    t          t          j        |           |          S )zReshape the 2-D input *matrix* to have a column count given by *cols*.

    >>> matrix = [(0, 1), (2, 3), (4, 5)]
    >>> cols = 3
    >>> list(reshape(matrix, cols))
    [(0, 1, 2), (3, 4, 5)]
    )r#   r
   r|   )matrixcolss     rZ   r?   r?     s     5&v..555r\   c                     t          |d                   }t          t          t          t	          | t          |                              |          S )a#  Multiply two matrices.

    >>> list(matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]))
    [(49, 80), (41, 60)]

    The caller should ensure that the dimensions of the input matrices are
    compatible with each other.

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rk   r#   r   r   r   rN   )m1m2r`   s      rZ   r0   r0     s=     	BqE

A78WR2%?%?@@!DDDr\   c                     t          d|           D ]R}dx}}d}|dk    r:||z  |z   | z  }||z  |z   | z  }||z  |z   | z  }t          ||z
  |           }|dk    :|| k    r|c S St          d          )Nr   r
  zprime or under 5)r   r   r   )r`   r   rX   rY   ds        rZ   _factor_pollardr+    s     1a[[ 	 		A1ffQaAQaAQaAAE1A	 1ff
 66HHH 
'
(
((r\      c              #   *  K   | dk     rdS t           D ]}| |z  s|V  | |z  } | |z  g }| dk    r| gng }|D ]F} | dk     st          |           r|                    |            -t          |           }||| |z  fz  }Gt	          |          E d{V  dS )a  Yield the prime factors of n.

    >>> list(factor(360))
    [2, 2, 2, 3, 3, 5]

    Finds small factors with trial division.  Larger factors are
    either verified as prime with ``is_prime`` or split into
    smaller factors with Pollard's rho algorithm.
    r
  Nr   i  )_primes_below_211r,   r   r+  r   )r`   primeprimestodofacts        rZ   r)   r)   .  s       	1uu #  e) 	KKK%KA e) 	
 Fa%%A33RD & &v::!:MM!"1%%DT19%%DDf~~r\   c           	          t          |           }|dk    r t          |          d          S t          t          t	          |          t          t          |                              }t          | |          S )ad  Evaluate a polynomial at a specific value.

    Computes with better numeric stability than Horner's method.

    Evaluate ``x^3 - 4 * x^2 - 17 * x + 60`` at ``x = 2.5``:

    >>> coefficients = [1, -4, -17, 60]
    >>> x = 2.5
    >>> polynomial_eval(coefficients, x)
    8.125

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rk   typerc   powr   reversedr   r   )coefficientsrX   r`   powerss       rZ   r9   r9   O  sc     	LAAvvtAwwqzzfQii%((!3!344FL&)))r\   c                 .    t          t          |            S )zReturn the sum of the squares of the input values.

    >>> sum_of_squares([10, 20, 30])
    1400

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    )r   r   r"  s    rZ   rI   rI   d  s     SWWr\   c                     t          |           }t          t          d|                    }t          t	          t
          | |                    S )uX  Compute the first derivative of a polynomial.

    Evaluate the derivative of ``x³ - 4 x² - 17 x + 60``:

    >>> coefficients = [1, -4, -17, 60]
    >>> derivative_coefficients = polynomial_derivative(coefficients)
    >>> derivative_coefficients
    [3, -8, -17]

    Supports all numeric types: int, float, complex, Decimal, Fraction.
    r   )rk   r6  r   r^   rc   r   )r7  r`   r8  s      rZ   r;   r;   o  s@     	LAeAqkk""FCv..///r\   c                 T    t          t          |                     D ]
}| | |z  z  } | S )u  Return the count of natural numbers up to *n* that are coprime with *n*.

    Euler's totient function φ(n) gives the number of totatives.
    Totative are integers k in the range 1 ≤ k ≤ n such that gcd(n, k) = 1.

    >>> n = 9
    >>> totient(n)
    6

    >>> totatives = [x for x in range(1, n) if gcd(n, x) == 1]
    >>> totatives
    [1, 2, 4, 5, 7, 8]
    >>> len(totatives)
    6

    Reference:  https://en.wikipedia.org/wiki/Euler%27s_totient_function

    )r   r)   )r`   r/  s     rZ   rM   rM     s3    & VAYY  	Q%ZHr\   ))i  )r
  )i )   I   )l   tT7 )r
     =   )l   ay)r
        iS_ )l   ;n>)r
  r      r>     )l   p)r
  r   rB  r>  rC  r@  )l            )r
  iE  i$  in  i i= ik)l   %!HnfW )r
  r   rB  r>  rC  r@        rA     r<  %   )   c                     | dz
  | z                                   dz
  }| |z	  }d|z  |z  | k    r|dz  r|dk    sJ ||fS )z#Return s, d such that 2**s * d == nr   r   )
bit_length)r`   r   r*  s      rZ   _shift_to_oddrK    s\     a%1  ""Q&A	QAFa<1Q16666a4Kr\   c                     | dk    r| dz  rd|cxk    r| k     sn J t          | dz
            \  }}t          |||           }|dk    s	|| dz
  k    rdS t          |dz
            D ]}||z  | z  }|| dz
  k    r dS dS )Nr
  r   TF)rK  r5  r   )r`   baser   r*  rX   _s         rZ   _strong_probable_primerO    s    EEAEAMMMMMMMMMMQDAqD!QAAvva!et1q5\\  EAIA::44  5r\   c                       dk     r dv S  dz  r dz  r dz  r dz  r
 dz  r dz  sd	S t           D ]\  }} |k     r n fd
t          d          D             }t           fd|D                       S )a  Return ``True`` if *n* is prime and ``False`` otherwise.

    Basic examples:

        >>> is_prime(37)
        True
        >>> is_prime(3 * 13)
        False
        >>> is_prime(18_446_744_073_709_551_557)
        True

    Find the next prime over one billion:

        >>> next(filter(is_prime, count(10**9)))
        1000000007

    Generate random primes up to 200 bits and up to 60 decimal digits:

        >>> from random import seed, randrange, getrandbits
        >>> seed(18675309)

        >>> next(filter(is_prime, map(getrandbits, repeat(200))))
        893303929355758292373272075469392561129886005037663238028407

        >>> next(filter(is_prime, map(randrange, repeat(10**60))))
        269638077304026462407872868003560484232362454342414618963649

    This function is exact for values of *n* below 10**24.  For larger inputs,
    the probabilistic Miller-Rabin primality test has a less than 1 in 2**128
    chance of a false positive.
    rD  >   r
  r   rB  r>  rC  r@  r   r   rB  r>  rC  r@  Fc              3   >   K   | ]}t          d dz
            V  dS )r
  r   N)_private_randranger   s     rZ   r   zis_prime.<locals>.<genexpr>  s2      AA!#Aq1u--AAAAAAr\   @   c              3   8   K   | ]}t          |          V  d S rW   )rO  )r   rM  r`   s     rZ   r   zis_prime.<locals>.<genexpr>  s.      AA4%a..AAAAAAr\   )_perfect_testsr   all)r`   limitbasess   `  rZ   r,   r,     s    B 	2vv(((E a!e A !a% AF q2v u& B Buu99E  BAAAuRyyAAAAAAA5AAAAAAr\   c                 "    t          d|           S )zReturns an iterable with *n* elements for efficient looping.
    Like ``range(n)`` but doesn't create integers.

    >>> i = 0
    >>> for _ in loops(5):
    ...     i += 1
    >>> i
    5

    Nr   )r`   s    rZ   r/   r/     s     $??r\   c                  b    t          t          t          t          |           |                     S )u  Number of distinct arrangements of a multiset.

    The expression ``multinomial(3, 4, 2)`` has several equivalent
    interpretations:

    * In the expansion of ``(a + b + c)⁹``, the coefficient of the
      ``a³b⁴c²`` term is 1260.

    * There are 1260 distinct ways to arrange 9 balls consisting of 3 reds, 4
      greens, and 2 blues.

    * There are 1260 unique ways to place 9 distinct objects into three bins
      with sizes 3, 4, and 2.

    The :func:`multinomial` function computes the length of
    :func:`distinct_permutations`.  For example, there are 83,160 distinct
    anagrams of the word "abracadabra":

        >>> from more_itertools import distinct_permutations, ilen
        >>> ilen(distinct_permutations('abracadabra'))
        83160

    This can be computed directly from the letter counts, 5a 2b 2r 1c 1d:

        >>> from collections import Counter
        >>> list(Counter('abracadabra').values())
        [5, 2, 2, 1, 1]
        >>> multinomial(5, 2, 1, 1, 2)
        83160

    A binomial coefficient is a special case of multinomial where there are
    only two categories.  For example, the number of ways to arrange 12 balls
    with 5 reds and 7 blues is ``multinomial(5, 7)`` or ``math.comb(12, 5)``.

    When the multiplicities are all just 1, :func:`multinomial`
    is a special case of ``math.factorial`` so that
    ``multinomial(1, 1, 1, 1, 1, 1, 1) == math.factorial(7)``.

    Reference:  https://en.wikipedia.org/wiki/Multinomial_theorem

    )r   rc   r   r	   )countss    rZ   r1   r1     s'    T D*V,,f55666r\   )r   rW   )r   N)NF)NN)r   N)u__doc__randomcollectionsr   
contextlibr   collections.abcr   	functoolsr   r   	itertoolsr	   r
   r   r   r   r   r   r   r   r   r   r   r   mathr   r   r   r   operatorr   r   r   r   r   r   r    sysr!   __all__objectr   r   r!  r   rU   r   ImportErrorrL   rJ   rK   r%   r3   r"   r   r>   r6   r5   r2   r'   r*   rD   r   r7   r   r   r   r   r   r+   rE   r8   r<   rQ   rR   rP   r-   r(   rC   rB   rA   r@   r4   r=   r&   r$   rO   r  r  rG   rH   r:   r.   rF   r  r#   r  rN   r?   r0   r+  r}   r.  r)   r9   rI   r;   rM   rU  rK  rO  RandomrR  r,   r/   r1   r   r\   rZ   <module>rj     s                 ! ! ! ! ! ! ( ( ( ( ( ( ( (                              ( ' ' ' ' ' ' ' ' ' ' ' 3 3 3 3 3 3 3 3 3 3 3 3 , , , , , , , , , ,      2 2 2h &((,Ct '#d+++KK    KKK-((((((( - - -,,HHH-% % % ' ' ' '$/ / /$%+ %+ %+ %+P
4 
4 
4 
4   4 ! $ $ $ $) ) ) ; ; ;
% 
% 
%	, 	, 	,. . . .6  	)888888
, , , !(H    HHH    J     / / / %= %= %= %=P( ( ($; ; ;8N N N** * * *ZA A A A/ / / /(   :1 1 1 1( "# 1 1 1 1 1(" " " "$+ + + + + +"' ' 'T$ $ $(' (' ('V/ / /B       ? ? ?2- - -  $&; &; &; &;R* * ** %*     ( 666666', = = = = = = G&GO	 	 	6 6 6E E E) ) )  E%%**%%   B* * **  0 0 0"  2       & #V]__. -B -B -B`  *7 *7 *7 *7 *7s6   6B BBB% %B0/B0$C: :DD