from __future__ import annotations

from functools import partial
from operator import methodcaller
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Generic,
    Literal,
    Mapping,
    Protocol,
    Sequence,
)

from narwhals._compliant.any_namespace import (
    CatNamespace,
    DateTimeNamespace,
    ListNamespace,
    NameNamespace,
    StringNamespace,
    StructNamespace,
)
from narwhals._compliant.namespace import CompliantNamespace
from narwhals._compliant.typing import (
    AliasName,
    AliasNames,
    CompliantExprT_co,
    CompliantFrameT,
    CompliantLazyFrameT,
    CompliantSeriesOrNativeExprT_co,
    EagerDataFrameT,
    EagerExprT,
    EagerSeriesT,
    LazyExprT,
    NativeExprT,
)
from narwhals._typing_compat import Protocol38, deprecated
from narwhals._utils import _StoresCompliant, not_implemented
from narwhals.dependencies import get_numpy, is_numpy_array

if TYPE_CHECKING:
    from typing import Mapping

    from typing_extensions import Self, TypeIs

    from narwhals._compliant.namespace import CompliantNamespace, EagerNamespace
    from narwhals._compliant.series import CompliantSeries
    from narwhals._compliant.typing import (
        AliasNames,
        EvalNames,
        EvalSeries,
        ScalarKwargs,
        WindowFunction,
    )
    from narwhals._expression_parsing import ExprKind, ExprMetadata
    from narwhals._utils import Implementation, Version, _FullContext
    from narwhals.typing import (
        FillNullStrategy,
        IntoDType,
        NonNestedLiteral,
        NumericLiteral,
        RankMethod,
        RollingInterpolationMethod,
        TemporalLiteral,
        TimeUnit,
    )

__all__ = ["CompliantExpr", "EagerExpr", "LazyExpr", "NativeExpr"]


class NativeExpr(Protocol):
    """An `Expr`-like object from a package with [Lazy-only support](https://narwhals-dev.github.io/narwhals/extending/#levels-of-support).

    Protocol members are chosen *purely* for matching statically - as they
    are common to all currently supported packages.
    """

    def between(self, *args: Any, **kwds: Any) -> Any: ...
    def isin(self, *args: Any, **kwds: Any) -> Any: ...


class CompliantExpr(Protocol38[CompliantFrameT, CompliantSeriesOrNativeExprT_co]):
    _implementation: Implementation
    _backend_version: tuple[int, ...]
    _version: Version
    _evaluate_output_names: EvalNames[CompliantFrameT]
    _alias_output_names: AliasNames | None
    _metadata: ExprMetadata | None

    def __call__(
        self, df: CompliantFrameT
    ) -> Sequence[CompliantSeriesOrNativeExprT_co]: ...
    def __narwhals_expr__(self) -> None: ...
    def __narwhals_namespace__(self) -> CompliantNamespace[CompliantFrameT, Self]: ...
    @classmethod
    def from_column_names(
        cls,
        evaluate_column_names: EvalNames[CompliantFrameT],
        /,
        *,
        context: _FullContext,
    ) -> Self: ...
    @classmethod
    def from_column_indices(cls, *column_indices: int, context: _FullContext) -> Self: ...
    @staticmethod
    def _eval_names_indices(indices: Sequence[int], /) -> EvalNames[CompliantFrameT]:
        def fn(df: CompliantFrameT) -> Sequence[str]:
            column_names = df.columns
            return [column_names[i] for i in indices]

        return fn

    def is_null(self) -> Self: ...
    def abs(self) -> Self: ...
    def all(self) -> Self: ...
    def any(self) -> Self: ...
    def alias(self, name: str) -> Self: ...
    def cast(self, dtype: IntoDType) -> Self: ...
    def count(self) -> Self: ...
    def min(self) -> Self: ...
    def max(self) -> Self: ...
    def arg_min(self) -> Self: ...
    def arg_max(self) -> Self: ...
    def arg_true(self) -> Self: ...
    def mean(self) -> Self: ...
    def sum(self) -> Self: ...
    def median(self) -> Self: ...
    def skew(self) -> Self: ...
    def std(self, *, ddof: int) -> Self: ...
    def var(self, *, ddof: int) -> Self: ...
    def n_unique(self) -> Self: ...
    def null_count(self) -> Self: ...
    def drop_nulls(self) -> Self: ...
    def fill_null(
        self,
        value: Self | NonNestedLiteral,
        strategy: FillNullStrategy | None,
        limit: int | None,
    ) -> Self: ...
    def diff(self) -> Self: ...
    def exp(self) -> Self: ...
    def unique(self) -> Self: ...
    def len(self) -> Self: ...
    def log(self, base: float) -> Self: ...
    def round(self, decimals: int) -> Self: ...
    def mode(self) -> Self: ...
    def head(self, n: int) -> Self: ...
    def tail(self, n: int) -> Self: ...
    def shift(self, n: int) -> Self: ...
    def is_finite(self) -> Self: ...
    def is_nan(self) -> Self: ...
    def is_unique(self) -> Self: ...
    def is_first_distinct(self) -> Self: ...
    def is_last_distinct(self) -> Self: ...
    def cum_sum(self, *, reverse: bool) -> Self: ...
    def cum_count(self, *, reverse: bool) -> Self: ...
    def cum_min(self, *, reverse: bool) -> Self: ...
    def cum_max(self, *, reverse: bool) -> Self: ...
    def cum_prod(self, *, reverse: bool) -> Self: ...
    def is_in(self, other: Any) -> Self: ...
    def sort(self, *, descending: bool, nulls_last: bool) -> Self: ...
    def rank(self, method: RankMethod, *, descending: bool) -> Self: ...
    def replace_strict(
        self,
        old: Sequence[Any] | Mapping[Any, Any],
        new: Sequence[Any],
        *,
        return_dtype: IntoDType | None,
    ) -> Self: ...
    def over(self, partition_by: Sequence[str], order_by: Sequence[str]) -> Self: ...
    def sample(
        self,
        n: int | None,
        *,
        fraction: float | None,
        with_replacement: bool,
        seed: int | None,
    ) -> Self: ...
    def quantile(
        self, quantile: float, interpolation: RollingInterpolationMethod
    ) -> Self: ...
    def map_batches(
        self,
        function: Callable[[CompliantSeries[Any]], CompliantExpr[Any, Any]],
        return_dtype: IntoDType | None,
    ) -> Self: ...

    def clip(
        self,
        lower_bound: Self | NumericLiteral | TemporalLiteral | None,
        upper_bound: Self | NumericLiteral | TemporalLiteral | None,
    ) -> Self: ...

    def ewm_mean(
        self,
        *,
        com: float | None,
        span: float | None,
        half_life: float | None,
        alpha: float | None,
        adjust: bool,
        min_samples: int,
        ignore_nulls: bool,
    ) -> Self: ...

    def rolling_sum(
        self, window_size: int, *, min_samples: int, center: bool
    ) -> Self: ...

    def rolling_mean(
        self, window_size: int, *, min_samples: int, center: bool
    ) -> Self: ...

    def rolling_var(
        self, window_size: int, *, min_samples: int, center: bool, ddof: int
    ) -> Self: ...

    def rolling_std(
        self, window_size: int, *, min_samples: int, center: bool, ddof: int
    ) -> Self: ...

    @deprecated("Since `1.22.0`")
    def gather_every(self, n: int, offset: int) -> Self: ...
    def __and__(self, other: Any) -> Self: ...
    def __or__(self, other: Any) -> Self: ...
    def __add__(self, other: Any) -> Self: ...
    def __sub__(self, other: Any) -> Self: ...
    def __mul__(self, other: Any) -> Self: ...
    def __floordiv__(self, other: Any) -> Self: ...
    def __truediv__(self, other: Any) -> Self: ...
    def __mod__(self, other: Any) -> Self: ...
    def __pow__(self, other: Any) -> Self: ...
    def __gt__(self, other: Any) -> Self: ...
    def __ge__(self, other: Any) -> Self: ...
    def __lt__(self, other: Any) -> Self: ...
    def __le__(self, other: Any) -> Self: ...
    def __invert__(self) -> Self: ...
    def broadcast(
        self, kind: Literal[ExprKind.AGGREGATION, ExprKind.LITERAL]
    ) -> Self: ...
    def _is_multi_output_unnamed(self) -> bool:
        """Return `True` for multi-output aggregations without names.

        For example, column `'a'` only appears in the output as a grouping key:

            df.group_by('a').agg(nw.all().sum())

        It does not get included in:

            nw.all().sum().
        """
        assert self._metadata is not None  # noqa: S101
        return self._metadata.expansion_kind.is_multi_unnamed()

    def _evaluate_aliases(
        self: CompliantExpr[CompliantFrameT, Any], frame: CompliantFrameT, /
    ) -> Sequence[str]:
        names = self._evaluate_output_names(frame)
        return alias(names) if (alias := self._alias_output_names) else names

    @property
    def str(self) -> Any: ...
    @property
    def name(self) -> Any: ...
    @property
    def dt(self) -> Any: ...
    @property
    def cat(self) -> Any: ...
    @property
    def list(self) -> Any: ...
    @property
    def struct(self) -> Any: ...


class DepthTrackingExpr(
    CompliantExpr[CompliantFrameT, CompliantSeriesOrNativeExprT_co],
    Protocol38[CompliantFrameT, CompliantSeriesOrNativeExprT_co],
):
    _depth: int
    _function_name: str

    @classmethod
    def from_column_names(
        cls: type[Self],
        evaluate_column_names: EvalNames[CompliantFrameT],
        /,
        *,
        context: _FullContext,
        function_name: str = "",
    ) -> Self: ...

    def _is_elementary(self) -> bool:
        """Check if expr is elementary.

        Examples:
            - nw.col('a').mean()  # depth 1
            - nw.mean('a')  # depth 1
            - nw.len()  # depth 0

        as opposed to, say

            - nw.col('a').filter(nw.col('b')>nw.col('c')).max()

        Elementary expressions are the only ones supported properly in
        pandas, PyArrow, and Dask.
        """
        return self._depth < 2

    def __repr__(self) -> str:  # pragma: no cover
        return f"{type(self).__name__}(depth={self._depth}, function_name={self._function_name})"


class EagerExpr(
    DepthTrackingExpr[EagerDataFrameT, EagerSeriesT],
    Protocol38[EagerDataFrameT, EagerSeriesT],
):
    _call: EvalSeries[EagerDataFrameT, EagerSeriesT]
    _scalar_kwargs: ScalarKwargs

    def __init__(
        self,
        call: EvalSeries[EagerDataFrameT, EagerSeriesT],
        *,
        depth: int,
        function_name: str,
        evaluate_output_names: EvalNames[EagerDataFrameT],
        alias_output_names: AliasNames | None,
        implementation: Implementation,
        backend_version: tuple[int, ...],
        version: Version,
        scalar_kwargs: ScalarKwargs | None = None,
    ) -> None: ...

    def __call__(self, df: EagerDataFrameT) -> Sequence[EagerSeriesT]:
        return self._call(df)

    def __narwhals_namespace__(
        self,
    ) -> EagerNamespace[EagerDataFrameT, EagerSeriesT, Self, Any]: ...
    def __narwhals_expr__(self) -> None: ...

    @classmethod
    def _from_callable(
        cls,
        func: EvalSeries[EagerDataFrameT, EagerSeriesT],
        *,
        depth: int,
        function_name: str,
        evaluate_output_names: EvalNames[EagerDataFrameT],
        alias_output_names: AliasNames | None,
        context: _FullContext,
        scalar_kwargs: ScalarKwargs | None = None,
    ) -> Self:
        return cls(
            func,
            depth=depth,
            function_name=function_name,
            evaluate_output_names=evaluate_output_names,
            alias_output_names=alias_output_names,
            implementation=context._implementation,
            backend_version=context._backend_version,
            version=context._version,
            scalar_kwargs=scalar_kwargs,
        )

    @classmethod
    def _from_series(cls, series: EagerSeriesT) -> Self:
        return cls(
            lambda _df: [series],
            depth=0,
            function_name="series",
            evaluate_output_names=lambda _df: [series.name],
            alias_output_names=None,
            implementation=series._implementation,
            backend_version=series._backend_version,
            version=series._version,
        )

    def _reuse_series(
        self,
        method_name: str,
        *,
        returns_scalar: bool = False,
        scalar_kwargs: ScalarKwargs | None = None,
        **expressifiable_args: Any,
    ) -> Self:
        """Reuse Series implementation for expression.

        If Series.foo is already defined, and we'd like Expr.foo to be the same, we can
        leverage this method to do that for us.

        Arguments:
            method_name: name of method.
            returns_scalar: whether the Series version returns a scalar. In this case,
                the expression version should return a 1-row Series.
            scalar_kwargs: non-expressifiable args which we may need to reuse in `agg` or `over`,
                such as `ddof` for `std` and `var`.
            expressifiable_args: keyword arguments to pass to function, which may
                be expressifiable (e.g. `nw.col('a').is_between(3, nw.col('b')))`).
        """
        func = partial(
            self._reuse_series_inner,
            method_name=method_name,
            returns_scalar=returns_scalar,
            scalar_kwargs=scalar_kwargs or {},
            expressifiable_args=expressifiable_args,
        )
        return self._from_callable(
            func,
            depth=self._depth + 1,
            function_name=f"{self._function_name}->{method_name}",
            evaluate_output_names=self._evaluate_output_names,
            alias_output_names=self._alias_output_names,
            scalar_kwargs=scalar_kwargs,
            context=self,
        )

    # For PyArrow.Series, we return Python Scalars (like Polars does) instead of PyArrow Scalars.
    # However, when working with expressions, we keep everything PyArrow-native.
    def _reuse_series_extra_kwargs(
        self, *, returns_scalar: bool = False
    ) -> dict[str, Any]:
        return {}

    @classmethod
    def _is_expr(cls, obj: Self | Any) -> TypeIs[Self]:
        return hasattr(obj, "__narwhals_expr__")

    def _reuse_series_inner(
        self,
        df: EagerDataFrameT,
        *,
        method_name: str,
        returns_scalar: bool,
        scalar_kwargs: ScalarKwargs,
        expressifiable_args: dict[str, Any],
    ) -> Sequence[EagerSeriesT]:
        kwargs = {
            **scalar_kwargs,
            **{
                name: df._evaluate_expr(value) if self._is_expr(value) else value
                for name, value in expressifiable_args.items()
            },
        }
        method = methodcaller(
            method_name,
            **self._reuse_series_extra_kwargs(returns_scalar=returns_scalar),
            **kwargs,
        )
        out: Sequence[EagerSeriesT] = [
            series._from_scalar(method(series)) if returns_scalar else method(series)
            for series in self(df)
        ]
        aliases = self._evaluate_aliases(df)
        if [s.name for s in out] != list(aliases):  # pragma: no cover
            msg = (
                f"Safety assertion failed, please report a bug to https://github.com/narwhals-dev/narwhals/issues\n"
                f"Expression aliases: {aliases}\n"
                f"Series names: {[s.name for s in out]}"
            )
            raise AssertionError(msg)
        return out

    def _reuse_series_namespace(
        self,
        series_namespace: Literal["cat", "dt", "list", "name", "str", "struct"],
        method_name: str,
        **kwargs: Any,
    ) -> Self:
        """Reuse Series implementation for expression.

        Just like `_reuse_series`, but for e.g. `Expr.dt.foo` instead
        of `Expr.foo`.

        Arguments:
            series_namespace: The Series namespace.
            method_name: name of method, within `series_namespace`.
            kwargs: keyword arguments to pass to function.
        """
        return self._from_callable(
            lambda df: [
                getattr(getattr(series, series_namespace), method_name)(**kwargs)
                for series in self(df)
            ],
            depth=self._depth + 1,
            function_name=f"{self._function_name}->{series_namespace}.{method_name}",
            evaluate_output_names=self._evaluate_output_names,
            alias_output_names=self._alias_output_names,
            scalar_kwargs=self._scalar_kwargs,
            context=self,
        )

    def broadcast(self, kind: Literal[ExprKind.AGGREGATION, ExprKind.LITERAL]) -> Self:
        # Mark the resulting Series with `_broadcast = True`.
        # Then, when extracting native objects, `extract_native` will
        # know what to do.
        def func(df: EagerDataFrameT) -> list[EagerSeriesT]:
            results = []
            for result in self(df):
                result._broadcast = True
                results.append(result)
            return results

        return type(self)(
            func,
            depth=self._depth,
            function_name=self._function_name,
            evaluate_output_names=self._evaluate_output_names,
            alias_output_names=self._alias_output_names,
            backend_version=self._backend_version,
            implementation=self._implementation,
            version=self._version,
            scalar_kwargs=self._scalar_kwargs,
        )

    def cast(self, dtype: IntoDType) -> Self:
        return self._reuse_series("cast", dtype=dtype)

    def __eq__(self, other: Self | Any) -> Self:  # type: ignore[override]
        return self._reuse_series("__eq__", other=other)

    def __ne__(self, other: Self | Any) -> Self:  # type: ignore[override]
        return self._reuse_series("__ne__", other=other)

    def __ge__(self, other: Self | Any) -> Self:
        return self._reuse_series("__ge__", other=other)

    def __gt__(self, other: Self | Any) -> Self:
        return self._reuse_series("__gt__", other=other)

    def __le__(self, other: Self | Any) -> Self:
        return self._reuse_series("__le__", other=other)

    def __lt__(self, other: Self | Any) -> Self:
        return self._reuse_series("__lt__", other=other)

    def __and__(self, other: Self | bool | Any) -> Self:
        return self._reuse_series("__and__", other=other)

    def __or__(self, other: Self | bool | Any) -> Self:
        return self._reuse_series("__or__", other=other)

    def __add__(self, other: Self | Any) -> Self:
        return self._reuse_series("__add__", other=other)

    def __sub__(self, other: Self | Any) -> Self:
        return self._reuse_series("__sub__", other=other)

    def __rsub__(self, other: Self | Any) -> Self:
        return self.alias("literal")._reuse_series("__rsub__", other=other)

    def __mul__(self, other: Self | Any) -> Self:
        return self._reuse_series("__mul__", other=other)

    def __truediv__(self, other: Self | Any) -> Self:
        return self._reuse_series("__truediv__", other=other)

    def __rtruediv__(self, other: Self | Any) -> Self:
        return self.alias("literal")._reuse_series("__rtruediv__", other=other)

    def __floordiv__(self, other: Self | Any) -> Self:
        return self._reuse_series("__floordiv__", other=other)

    def __rfloordiv__(self, other: Self | Any) -> Self:
        return self.alias("literal")._reuse_series("__rfloordiv__", other=other)

    def __pow__(self, other: Self | Any) -> Self:
        return self._reuse_series("__pow__", other=other)

    def __rpow__(self, other: Self | Any) -> Self:
        return self.alias("literal")._reuse_series("__rpow__", other=other)

    def __mod__(self, other: Self | Any) -> Self:
        return self._reuse_series("__mod__", other=other)

    def __rmod__(self, other: Self | Any) -> Self:
        return self.alias("literal")._reuse_series("__rmod__", other=other)

    # Unary
    def __invert__(self) -> Self:
        return self._reuse_series("__invert__")

    # Reductions
    def null_count(self) -> Self:
        return self._reuse_series("null_count", returns_scalar=True)

    def n_unique(self) -> Self:
        return self._reuse_series("n_unique", returns_scalar=True)

    def sum(self) -> Self:
        return self._reuse_series("sum", returns_scalar=True)

    def count(self) -> Self:
        return self._reuse_series("count", returns_scalar=True)

    def mean(self) -> Self:
        return self._reuse_series("mean", returns_scalar=True)

    def median(self) -> Self:
        return self._reuse_series("median", returns_scalar=True)

    def std(self, *, ddof: int) -> Self:
        return self._reuse_series(
            "std", returns_scalar=True, scalar_kwargs={"ddof": ddof}
        )

    def var(self, *, ddof: int) -> Self:
        return self._reuse_series(
            "var", returns_scalar=True, scalar_kwargs={"ddof": ddof}
        )

    def skew(self) -> Self:
        return self._reuse_series("skew", returns_scalar=True)

    def any(self) -> Self:
        return self._reuse_series("any", returns_scalar=True)

    def all(self) -> Self:
        return self._reuse_series("all", returns_scalar=True)

    def max(self) -> Self:
        return self._reuse_series("max", returns_scalar=True)

    def min(self) -> Self:
        return self._reuse_series("min", returns_scalar=True)

    def arg_min(self) -> Self:
        return self._reuse_series("arg_min", returns_scalar=True)

    def arg_max(self) -> Self:
        return self._reuse_series("arg_max", returns_scalar=True)

    # Other

    def clip(
        self,
        lower_bound: Self | NumericLiteral | TemporalLiteral | None,
        upper_bound: Self | NumericLiteral | TemporalLiteral | None,
    ) -> Self:
        return self._reuse_series(
            "clip", lower_bound=lower_bound, upper_bound=upper_bound
        )

    def is_null(self) -> Self:
        return self._reuse_series("is_null")

    def is_nan(self) -> Self:
        return self._reuse_series("is_nan")

    def fill_null(
        self,
        value: Self | NonNestedLiteral,
        strategy: FillNullStrategy | None,
        limit: int | None,
    ) -> Self:
        return self._reuse_series(
            "fill_null", value=value, strategy=strategy, limit=limit
        )

    def is_in(self, other: Any) -> Self:
        return self._reuse_series("is_in", other=other)

    def arg_true(self) -> Self:
        return self._reuse_series("arg_true")

    def filter(self, *predicates: Self) -> Self:
        plx = self.__narwhals_namespace__()
        predicate = plx.all_horizontal(*predicates)
        return self._reuse_series("filter", predicate=predicate)

    def drop_nulls(self) -> Self:
        return self._reuse_series("drop_nulls")

    def replace_strict(
        self,
        old: Sequence[Any] | Mapping[Any, Any],
        new: Sequence[Any],
        *,
        return_dtype: IntoDType | None,
    ) -> Self:
        return self._reuse_series(
            "replace_strict", old=old, new=new, return_dtype=return_dtype
        )

    def sort(self, *, descending: bool, nulls_last: bool) -> Self:
        return self._reuse_series("sort", descending=descending, nulls_last=nulls_last)

    def abs(self) -> Self:
        return self._reuse_series("abs")

    def unique(self) -> Self:
        return self._reuse_series("unique", maintain_order=False)

    def diff(self) -> Self:
        return self._reuse_series("diff")

    def sample(
        self,
        n: int | None,
        *,
        fraction: float | None,
        with_replacement: bool,
        seed: int | None,
    ) -> Self:
        return self._reuse_series(
            "sample", n=n, fraction=fraction, with_replacement=with_replacement, seed=seed
        )

    def alias(self, name: str) -> Self:
        def alias_output_names(names: Sequence[str]) -> Sequence[str]:
            if len(names) != 1:
                msg = f"Expected function with single output, found output names: {names}"
                raise ValueError(msg)
            return [name]

        # Define this one manually, so that we can
        # override `output_names` and not increase depth
        return type(self)(
            lambda df: [series.alias(name) for series in self(df)],
            depth=self._depth,
            function_name=self._function_name,
            evaluate_output_names=self._evaluate_output_names,
            alias_output_names=alias_output_names,
            backend_version=self._backend_version,
            implementation=self._implementation,
            version=self._version,
            scalar_kwargs=self._scalar_kwargs,
        )

    def is_unique(self) -> Self:
        return self._reuse_series("is_unique")

    def is_first_distinct(self) -> Self:
        return self._reuse_series("is_first_distinct")

    def is_last_distinct(self) -> Self:
        return self._reuse_series("is_last_distinct")

    def quantile(
        self, quantile: float, interpolation: RollingInterpolationMethod
    ) -> Self:
        return self._reuse_series(
            "quantile",
            quantile=quantile,
            interpolation=interpolation,
            returns_scalar=True,
        )

    def head(self, n: int) -> Self:
        return self._reuse_series("head", n=n)

    def tail(self, n: int) -> Self:
        return self._reuse_series("tail", n=n)

    def round(self, decimals: int) -> Self:
        return self._reuse_series("round", decimals=decimals)

    def len(self) -> Self:
        return self._reuse_series("len", returns_scalar=True)

    def gather_every(self, n: int, offset: int) -> Self:
        return self._reuse_series("gather_every", n=n, offset=offset)

    def mode(self) -> Self:
        return self._reuse_series("mode")

    def is_finite(self) -> Self:
        return self._reuse_series("is_finite")

    def rolling_mean(self, window_size: int, *, min_samples: int, center: bool) -> Self:
        return self._reuse_series(
            "rolling_mean",
            window_size=window_size,
            min_samples=min_samples,
            center=center,
        )

    def rolling_std(
        self, window_size: int, *, min_samples: int, center: bool, ddof: int
    ) -> Self:
        return self._reuse_series(
            "rolling_std",
            window_size=window_size,
            min_samples=min_samples,
            center=center,
            ddof=ddof,
        )

    def rolling_sum(self, window_size: int, *, min_samples: int, center: bool) -> Self:
        return self._reuse_series(
            "rolling_sum", window_size=window_size, min_samples=min_samples, center=center
        )

    def rolling_var(
        self, window_size: int, *, min_samples: int, center: bool, ddof: int
    ) -> Self:
        return self._reuse_series(
            "rolling_var",
            window_size=window_size,
            min_samples=min_samples,
            center=center,
            ddof=ddof,
        )

    def map_batches(
        self, function: Callable[[Any], Any], return_dtype: IntoDType | None
    ) -> Self:
        def func(df: EagerDataFrameT) -> Sequence[EagerSeriesT]:
            input_series_list = self(df)
            output_names = [input_series.name for input_series in input_series_list]
            result = [function(series) for series in input_series_list]
            if is_numpy_array(result[0]) or (
                (np := get_numpy()) is not None and np.isscalar(result[0])
            ):
                from_numpy = partial(
                    self.__narwhals_namespace__()._series.from_numpy, context=self
                )
                result = [
                    from_numpy(array).alias(output_name)
                    for array, output_name in zip(result, output_names)
                ]
            if return_dtype is not None:
                result = [series.cast(return_dtype) for series in result]
            return result

        return self._from_callable(
            func,
            depth=self._depth + 1,
            function_name=self._function_name + "->map_batches",
            evaluate_output_names=self._evaluate_output_names,
            alias_output_names=self._alias_output_names,
            context=self,
        )

    @property
    def cat(self) -> EagerExprCatNamespace[Self]:
        return EagerExprCatNamespace(self)

    @property
    def dt(self) -> EagerExprDateTimeNamespace[Self]:
        return EagerExprDateTimeNamespace(self)

    @property
    def list(self) -> EagerExprListNamespace[Self]:
        return EagerExprListNamespace(self)

    @property
    def name(self) -> EagerExprNameNamespace[Self]:
        return EagerExprNameNamespace(self)

    @property
    def str(self) -> EagerExprStringNamespace[Self]:
        return EagerExprStringNamespace(self)

    @property
    def struct(self) -> EagerExprStructNamespace[Self]:
        return EagerExprStructNamespace(self)


class LazyExpr(
    CompliantExpr[CompliantLazyFrameT, NativeExprT],
    Protocol38[CompliantLazyFrameT, NativeExprT],
):
    arg_min: not_implemented = not_implemented()
    arg_max: not_implemented = not_implemented()
    arg_true: not_implemented = not_implemented()
    head: not_implemented = not_implemented()
    tail: not_implemented = not_implemented()
    mode: not_implemented = not_implemented()
    sort: not_implemented = not_implemented()
    sample: not_implemented = not_implemented()
    map_batches: not_implemented = not_implemented()
    ewm_mean: not_implemented = not_implemented()
    gather_every: not_implemented = not_implemented()
    replace_strict: not_implemented = not_implemented()
    cat: not_implemented = not_implemented()  # pyright: ignore[reportAssignmentType]

    @property
    def window_function(self) -> WindowFunction[CompliantLazyFrameT, NativeExprT]: ...

    @classmethod
    def _is_expr(cls, obj: Self | Any) -> TypeIs[Self]:
        return hasattr(obj, "__narwhals_expr__")

    def _with_callable(self, call: Callable[..., Any], /) -> Self: ...
    def _with_alias_output_names(self, func: AliasNames | None, /) -> Self: ...
    def alias(self, name: str) -> Self:
        def fn(names: Sequence[str]) -> Sequence[str]:
            if len(names) != 1:
                msg = f"Expected function with single output, found output names: {names}"
                raise ValueError(msg)
            return [name]

        return self._with_alias_output_names(fn)

    @classmethod
    def _alias_native(cls, expr: NativeExprT, name: str, /) -> NativeExprT: ...

    @property
    def name(self) -> LazyExprNameNamespace[Self]:
        return LazyExprNameNamespace(self)


class _ExprNamespace(  # type: ignore[misc]
    _StoresCompliant[CompliantExprT_co], Protocol[CompliantExprT_co]
):
    _compliant_expr: CompliantExprT_co

    @property
    def compliant(self) -> CompliantExprT_co:
        return self._compliant_expr


class EagerExprNamespace(_ExprNamespace[EagerExprT], Generic[EagerExprT]):
    def __init__(self, expr: EagerExprT, /) -> None:
        self._compliant_expr = expr


class LazyExprNamespace(_ExprNamespace[LazyExprT], Generic[LazyExprT]):
    def __init__(self, expr: LazyExprT, /) -> None:
        self._compliant_expr = expr


class EagerExprCatNamespace(
    EagerExprNamespace[EagerExprT], CatNamespace[EagerExprT], Generic[EagerExprT]
):
    def get_categories(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("cat", "get_categories")


class EagerExprDateTimeNamespace(
    EagerExprNamespace[EagerExprT], DateTimeNamespace[EagerExprT], Generic[EagerExprT]
):
    def to_string(self, format: str) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "to_string", format=format)

    def replace_time_zone(self, time_zone: str | None) -> EagerExprT:
        return self.compliant._reuse_series_namespace(
            "dt", "replace_time_zone", time_zone=time_zone
        )

    def convert_time_zone(self, time_zone: str) -> EagerExprT:
        return self.compliant._reuse_series_namespace(
            "dt", "convert_time_zone", time_zone=time_zone
        )

    def timestamp(self, time_unit: TimeUnit) -> EagerExprT:
        return self.compliant._reuse_series_namespace(
            "dt", "timestamp", time_unit=time_unit
        )

    def date(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "date")

    def year(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "year")

    def month(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "month")

    def day(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "day")

    def hour(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "hour")

    def minute(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "minute")

    def second(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "second")

    def millisecond(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "millisecond")

    def microsecond(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "microsecond")

    def nanosecond(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "nanosecond")

    def ordinal_day(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "ordinal_day")

    def weekday(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "weekday")

    def total_minutes(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "total_minutes")

    def total_seconds(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "total_seconds")

    def total_milliseconds(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "total_milliseconds")

    def total_microseconds(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "total_microseconds")

    def total_nanoseconds(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "total_nanoseconds")

    def truncate(self, every: str) -> EagerExprT:
        return self.compliant._reuse_series_namespace("dt", "truncate", every=every)


class EagerExprListNamespace(
    EagerExprNamespace[EagerExprT], ListNamespace[EagerExprT], Generic[EagerExprT]
):
    def len(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("list", "len")


class CompliantExprNameNamespace(  # type: ignore[misc]
    _ExprNamespace[CompliantExprT_co],
    NameNamespace[CompliantExprT_co],
    Protocol[CompliantExprT_co],
):
    def keep(self) -> CompliantExprT_co:
        return self._from_callable(lambda name: name, alias=False)

    def map(self, function: AliasName) -> CompliantExprT_co:
        return self._from_callable(function)

    def prefix(self, prefix: str) -> CompliantExprT_co:
        return self._from_callable(lambda name: f"{prefix}{name}")

    def suffix(self, suffix: str) -> CompliantExprT_co:
        return self._from_callable(lambda name: f"{name}{suffix}")

    def to_lowercase(self) -> CompliantExprT_co:
        return self._from_callable(str.lower)

    def to_uppercase(self) -> CompliantExprT_co:
        return self._from_callable(str.upper)

    @staticmethod
    def _alias_output_names(func: AliasName, /) -> AliasNames:
        def fn(output_names: Sequence[str], /) -> Sequence[str]:
            return [func(name) for name in output_names]

        return fn

    def _from_callable(
        self, func: AliasName, /, *, alias: bool = True
    ) -> CompliantExprT_co: ...


class EagerExprNameNamespace(
    EagerExprNamespace[EagerExprT],
    CompliantExprNameNamespace[EagerExprT],
    Generic[EagerExprT],
):
    def _from_callable(self, func: AliasName, /, *, alias: bool = True) -> EagerExprT:
        expr = self.compliant
        return type(expr)(
            lambda df: [
                series.alias(func(name))
                for series, name in zip(expr(df), expr._evaluate_output_names(df))
            ],
            depth=expr._depth,
            function_name=expr._function_name,
            evaluate_output_names=expr._evaluate_output_names,
            alias_output_names=self._alias_output_names(func) if alias else None,
            backend_version=expr._backend_version,
            implementation=expr._implementation,
            version=expr._version,
            scalar_kwargs=expr._scalar_kwargs,
        )


class LazyExprNameNamespace(
    LazyExprNamespace[LazyExprT],
    CompliantExprNameNamespace[LazyExprT],
    Generic[LazyExprT],
):
    def _from_callable(self, func: AliasName, /, *, alias: bool = True) -> LazyExprT:
        expr = self.compliant
        output_names = self._alias_output_names(func) if alias else None
        return expr._with_alias_output_names(output_names)


class EagerExprStringNamespace(
    EagerExprNamespace[EagerExprT], StringNamespace[EagerExprT], Generic[EagerExprT]
):
    def len_chars(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("str", "len_chars")

    def replace(self, pattern: str, value: str, *, literal: bool, n: int) -> EagerExprT:
        return self.compliant._reuse_series_namespace(
            "str", "replace", pattern=pattern, value=value, literal=literal, n=n
        )

    def replace_all(self, pattern: str, value: str, *, literal: bool) -> EagerExprT:
        return self.compliant._reuse_series_namespace(
            "str", "replace_all", pattern=pattern, value=value, literal=literal
        )

    def strip_chars(self, characters: str | None) -> EagerExprT:
        return self.compliant._reuse_series_namespace(
            "str", "strip_chars", characters=characters
        )

    def starts_with(self, prefix: str) -> EagerExprT:
        return self.compliant._reuse_series_namespace("str", "starts_with", prefix=prefix)

    def ends_with(self, suffix: str) -> EagerExprT:
        return self.compliant._reuse_series_namespace("str", "ends_with", suffix=suffix)

    def contains(self, pattern: str, *, literal: bool) -> EagerExprT:
        return self.compliant._reuse_series_namespace(
            "str", "contains", pattern=pattern, literal=literal
        )

    def slice(self, offset: int, length: int | None) -> EagerExprT:
        return self.compliant._reuse_series_namespace(
            "str", "slice", offset=offset, length=length
        )

    def split(self, by: str) -> EagerExprT:
        return self.compliant._reuse_series_namespace("str", "split", by=by)

    def to_datetime(self, format: str | None) -> EagerExprT:
        return self.compliant._reuse_series_namespace("str", "to_datetime", format=format)

    def to_lowercase(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("str", "to_lowercase")

    def to_uppercase(self) -> EagerExprT:
        return self.compliant._reuse_series_namespace("str", "to_uppercase")


class EagerExprStructNamespace(
    EagerExprNamespace[EagerExprT], StructNamespace[EagerExprT], Generic[EagerExprT]
):
    def field(self, name: str) -> EagerExprT:
        return self.compliant._reuse_series_namespace("struct", "field", name=name).alias(
            name
        )
