
    \Mh                         d Z ddlZddlmZ ddlmZ g dZej        d             Z	d Z
 ed	           ed
          ej        d                                     Z ed	           ed
          ej        d                                     ZdS )zI
=======================
Distance-regular graphs
=======================
    N)not_implemented_for   )diameter)is_distance_regularis_strongly_regularintersection_arrayglobal_parametersc                 R    	 t          |            dS # t          j        $ r Y dS w xY w)a  Returns True if the graph is distance regular, False otherwise.

    A connected graph G is distance-regular if for any nodes x,y
    and any integers i,j=0,1,...,d (where d is the graph
    diameter), the number of vertices at distance i from x and
    distance j from y depends only on i,j and the graph distance
    between x and y, independently of the choice of x and y.

    Parameters
    ----------
    G: Networkx graph (undirected)

    Returns
    -------
    bool
      True if the graph is Distance Regular, False otherwise

    Examples
    --------
    >>> G = nx.hypercube_graph(6)
    >>> nx.is_distance_regular(G)
    True

    See Also
    --------
    intersection_array, global_parameters

    Notes
    -----
    For undirected and simple graphs only

    References
    ----------
    .. [1] Brouwer, A. E.; Cohen, A. M.; and Neumaier, A.
        Distance-Regular Graphs. New York: Springer-Verlag, 1989.
    .. [2] Weisstein, Eric W. "Distance-Regular Graph."
        http://mathworld.wolfram.com/Distance-RegularGraph.html

    TF)r   nxNetworkXErrorGs    d/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/networkx/algorithms/distance_regular.pyr   r      s@    R1t   uus    &&c                 L      fdt           dgz   dg|z             D             S )a  Returns global parameters for a given intersection array.

    Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d
    such that for any 2 vertices x,y in G at a distance i=d(x,y), there
    are exactly c_i neighbors of y at a distance of i-1 from x and b_i
    neighbors of y at a distance of i+1 from x.

    Thus, a distance regular graph has the global parameters,
    [[c_0,a_0,b_0],[c_1,a_1,b_1],......,[c_d,a_d,b_d]] for the
    intersection array  [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]
    where a_i+b_i+c_i=k , k= degree of every vertex.

    Parameters
    ----------
    b : list

    c : list

    Returns
    -------
    iterable
       An iterable over three tuples.

    Examples
    --------
    >>> G = nx.dodecahedral_graph()
    >>> b, c = nx.intersection_array(G)
    >>> list(nx.global_parameters(b, c))
    [(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]

    References
    ----------
    .. [1] Weisstein, Eric W. "Global Parameters."
       From MathWorld--A Wolfram Web Resource.
       http://mathworld.wolfram.com/GlobalParameters.html

    See Also
    --------
    intersection_array
    c              3   @   K   | ]\  }}|d          |z
  |z
  |fV  dS )r   N ).0xybs      r   	<genexpr>z$global_parameters.<locals>.<genexpr>m   s:      CCTQQ!q1a CCCCCC    r   )zip)r   cs   ` r   r	   r	   D   s7    R DCCCSaS1#'-B-BCCCCr   directed
multigraphc                   
 t          |           dk    rt          j        d          t          |                                           }t          |          \  }}|D ]!\  }}||k    rt          j        d          |}"t          t          j        |                     t          fdD                       }i 
i | D ]֊| D ]}	          |         n'# t          $ r}t          j        d          |d}~ww xY wt          fd| |         D                       }t          fd| |         D                       }	                    |          |k    s
                    |	          |	k    rt          j        d          |	
<   |<   Ҍ׈
fd	t          |          D             fd
t          |          D             fS )a  Returns the intersection array of a distance-regular graph.

    Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d
    such that for any 2 vertices x,y in G at a distance i=d(x,y), there
    are exactly c_i neighbors of y at a distance of i-1 from x and b_i
    neighbors of y at a distance of i+1 from x.

    A distance regular graph's intersection array is given by,
    [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]

    Parameters
    ----------
    G: Networkx graph (undirected)

    Returns
    -------
    b,c: tuple of lists

    Examples
    --------
    >>> G = nx.icosahedral_graph()
    >>> nx.intersection_array(G)
    ([5, 2, 1], [1, 2, 5])

    References
    ----------
    .. [1] Weisstein, Eric W. "Intersection Array."
       From MathWorld--A Wolfram Web Resource.
       http://mathworld.wolfram.com/IntersectionArray.html

    See Also
    --------
    global_parameters
    r   zGraph has no nodes.zGraph is not distance regular.c              3   f   K   | ]+}t          |                                                   V  ,d S )N)maxvalues)r   npath_lengths     r   r   z%intersection_array.<locals>.<genexpr>   s;      EEA3{1~,,..//EEEEEEr   Nc                 >    g | ]}|                  d z
  k    |S r   r   r   r!   ir"   us     r   
<listcomp>z&intersection_array.<locals>.<listcomp>   0    CCC1Aq(9QU(B(BQ(B(B(Br   c                 >    g | ]}|                  d z   k    |S r$   r   r%   s     r   r(   z&intersection_array.<locals>.<listcomp>   r)   r   zGraph is not distance regularc                 <    g | ]}                     |d           S )r   get)r   jbints     r   r(   z&intersection_array.<locals>.<listcomp>   s%    111A!Q111r   c                 B    g | ]}                     |d z   d          S )r   r   r,   )r   r.   cints     r   r(   z&intersection_array.<locals>.<listcomp>   s+    555!a%		555r   )lenr   NetworkXPointlessConceptiterdegreenextr   dictall_pairs_shortest_path_lengthr   KeyErrorr-   range)r   r5   _kknextr   verrr   r   r/   r1   r&   r"   r'   s             @@@@@r   r   r   p   s+   N 1vv{{)*?@@@!((**F&\\FQ  5A::"#CDDDr8;;<<KEEEEEEEEEHDD   	 	ARN1% R R R&'GHHcQR CCCCCC!CCCDDACCCCCC!CCCDDAxx1~~""dhhq!nn&9&9&'FGGGDGDGG	 	2111x1115555U8__555 s   C
D &C;;D c                 F    t          |           ot          |           dk    S )a  Returns True if and only if the given graph is strongly
    regular.

    An undirected graph is *strongly regular* if

    * it is regular,
    * each pair of adjacent vertices has the same number of neighbors in
      common,
    * each pair of nonadjacent vertices has the same number of neighbors
      in common.

    Each strongly regular graph is a distance-regular graph.
    Conversely, if a distance-regular graph has diameter two, then it is
    a strongly regular graph. For more information on distance-regular
    graphs, see :func:`is_distance_regular`.

    Parameters
    ----------
    G : NetworkX graph
        An undirected graph.

    Returns
    -------
    bool
        Whether `G` is strongly regular.

    Examples
    --------

    The cycle graph on five vertices is strongly regular. It is
    two-regular, each pair of adjacent vertices has no shared neighbors,
    and each pair of nonadjacent vertices has one shared neighbor::

        >>> G = nx.cycle_graph(5)
        >>> nx.is_strongly_regular(G)
        True

       )r   r   r   s    r   r   r      s#    j q!!6hqkkQ&66r   )__doc__networkxr   networkx.utilsr   distance_measuresr   __all___dispatchabler   r	   r   r   r   r   r   <module>rH      s)        . . . . . . ' ' ' ' ' '   , , ,^)D )D )DX Z  \""B B  #" ! BL Z  \""27 27  #" ! 27 27 27r   