
    \Mh                         d Z ddlZddlZddlmZ dgZ ed           ed           ej        d          d
d	                                    ZdS )z#Computation of graph non-randomness    N)not_implemented_fornon_randomnessdirected
multigraphweight)
edge_attrsc           	      `   ddl }t          j        |           rt          j        d          t          j        |           st          j        d          t          t          t          j        |                               dk    rt          j        d          |9t          t          t          j
                            |                               }|j                            t          j        | |                    }t          |                    |                    |d|                                       }|                                 }|                                 }d|z  |z  |||z
  z  z  }||d|z  z
  |z  |z   z
  t)          j        d|z  |z  d|z
  z            z  }	||	fS )	a  Compute the non-randomness of graph G.

    The first returned value nr is the sum of non-randomness values of all
    edges within the graph (where the non-randomness of an edge tends to be
    small when the two nodes linked by that edge are from two different
    communities).

    The second computed value nr_rd is a relative measure that indicates
    to what extent graph G is different from random graphs in terms
    of probability. When it is close to 0, the graph tends to be more
    likely generated by an Erdos Renyi model.

    Parameters
    ----------
    G : NetworkX graph
        Graph must be symmetric, connected, and without self-loops.

    k : int
        The number of communities in G.
        If k is not set, the function will use a default community
        detection algorithm to set it.

    weight : string or None, optional (default=None)
        The name of an edge attribute that holds the numerical value used
        as a weight. If None, then each edge has weight 1, i.e., the graph is
        binary.

    Returns
    -------
    non-randomness : (float, float) tuple
        Non-randomness, Relative non-randomness w.r.t.
        Erdos Renyi random graphs.

    Raises
    ------
    NetworkXException
        if the input graph is not connected.
    NetworkXError
        if the input graph contains self-loops or if graph has no edges.

    Examples
    --------
    >>> G = nx.karate_club_graph()
    >>> nr, nr_rd = nx.non_randomness(G, 2)
    >>> nr, nr_rd = nx.non_randomness(G, 2, "weight")

    Notes
    -----
    This computes Eq. (4.4) and (4.5) in Ref. [1]_.

    If a weight field is passed, this algorithm will use the eigenvalues
    of the weighted adjacency matrix to compute Eq. (4.4) and (4.5).

    References
    ----------
    .. [1] Xiaowei Ying and Xintao Wu,
           On Randomness Measures for Social Networks,
           SIAM International Conference on Data Mining. 2009
    r   Nz-non_randomness not applicable to empty graphszNon connected graph.z!Graph must not contain self-loops)r         )numpynxis_emptyNetworkXErroris_connectedNetworkXExceptionlenlistselfloop_edgestuple	communitylabel_propagation_communitieslinalgeigvalsto_numpy_arrayfloatrealsumnumber_of_nodesnumber_of_edgesmathsqrt)
Gkr   npeigenvaluesnrnmpnr_rds
             b/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/networkx/algorithms/non_randomness.pyr   r      s   ~  
{1~~ PNOOO?1 ;"#9:::
4!!$$%%&&**BCCCybl@@CCDDEE )##B$5a$G$G$GHHK	rwwrvvk"1"o..//	0	0B	A	A	
QqAE{#A AAI?Q&'49QUQY!a%5H+I+IIEu9    )Nr   )	__doc__r    networkxr   networkx.utilsr   __all___dispatchabler    r,   r+   <module>r3      s    * *      . . . . . .
 Z  \""X&&&T T T '& #" ! T T Tr,   