
    \MhJ                     X    d Z ddlmZ ddlZddlmZ dgZej        dd            Zd Z	dS )	z%Node redundancy for bipartite graphs.    )combinationsN)NetworkXErrornode_redundancyc                 |     | }t           fd|D                       rt          d           fd|D             S )u  Computes the node redundancy coefficients for the nodes in the bipartite
    graph `G`.

    The redundancy coefficient of a node `v` is the fraction of pairs of
    neighbors of `v` that are both linked to other nodes. In a one-mode
    projection these nodes would be linked together even if `v` were
    not there.

    More formally, for any vertex `v`, the *redundancy coefficient of `v`* is
    defined by

    .. math::

        rc(v) = \frac{|\{\{u, w\} \subseteq N(v),
        \: \exists v' \neq  v,\: (v',u) \in E\:
        \mathrm{and}\: (v',w) \in E\}|}{ \frac{|N(v)|(|N(v)|-1)}{2}},

    where `N(v)` is the set of neighbors of `v` in `G`.

    Parameters
    ----------
    G : graph
        A bipartite graph

    nodes : list or iterable (optional)
        Compute redundancy for these nodes. The default is all nodes in G.

    Returns
    -------
    redundancy : dictionary
        A dictionary keyed by node with the node redundancy value.

    Examples
    --------
    Compute the redundancy coefficient of each node in a graph::

        >>> from networkx.algorithms import bipartite
        >>> G = nx.cycle_graph(4)
        >>> rc = bipartite.node_redundancy(G)
        >>> rc[0]
        1.0

    Compute the average redundancy for the graph::

        >>> from networkx.algorithms import bipartite
        >>> G = nx.cycle_graph(4)
        >>> rc = bipartite.node_redundancy(G)
        >>> sum(rc.values()) / len(G)
        1.0

    Compute the average redundancy for a set of nodes::

        >>> from networkx.algorithms import bipartite
        >>> G = nx.cycle_graph(4)
        >>> rc = bipartite.node_redundancy(G)
        >>> nodes = [0, 2]
        >>> sum(rc[n] for n in nodes) / len(nodes)
        1.0

    Raises
    ------
    NetworkXError
        If any of the nodes in the graph (or in `nodes`, if specified) has
        (out-)degree less than two (which would result in division by zero,
        according to the definition of the redundancy coefficient).

    References
    ----------
    .. [1] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
       Basic notions for the analysis of large two-mode networks.
       Social Networks 30(1), 31--48.

    Nc              3   J   K   | ]}t          |                   d k     V  dS )   N)len.0vGs     h/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/networkx/algorithms/bipartite/redundancy.py	<genexpr>z"node_redundancy.<locals>.<genexpr>X   s1      
(
(Q3qt99q=
(
(
(
(
(
(    zSCannot compute redundancy coefficient for a node that has fewer than two neighbors.c                 2    i | ]}|t          |          S  )_node_redundancyr
   s     r   
<dictcomp>z#node_redundancy.<locals>.<dictcomp>^   s&    555!A1%%555r   )anyr   )r   nodess   ` r   r   r      sh    V }

(
(
(
(%
(
(
((( 
2
 
 	

 6555u5555r   c                      t                              }t           fdt                    d          D                       }d|z  ||dz
  z  z  S )a  Returns the redundancy of the node `v` in the bipartite graph `G`.

    If `G` is a graph with `n` nodes, the redundancy of a node is the ratio
    of the "overlap" of `v` to the maximum possible overlap of `v`
    according to its degree. The overlap of `v` is the number of pairs of
    neighbors that have mutual neighbors themselves, other than `v`.

    `v` must have at least two neighbors in `G`.

    c              3      K   | ]8\  }}t          |                   t          |                   z  hz
  4d V  9dS )   N)set)r   uwr   r   s      r   r   z#_node_redundancy.<locals>.<genexpr>m   s`        q!#ad))c!A$ii2GA31N	     r   r   r   )r	   sumr   )r   r   noverlaps   ``  r   r   r   a   sv     	AaD		A     $QqT1--    G KAQK((r   )N)
__doc__	itertoolsr   networkxnxr   __all___dispatchabler   r   r   r   r   <module>r&      s    + + " " " " " "     " " " " " "
 R6 R6 R6 R6j) ) ) ) )r   