
    \Mh                     j    d Z ddlZddlmZmZ dgZ ed          ej        d                         ZdS )zSemiconnectedness.    N)not_implemented_forpairwiseis_semiconnected
undirectedc                    t          |           dk    rt          j        d          t          j        |           sdS t          j        |           t          fdt          t          j                            D                       S )a  Returns True if the graph is semiconnected, False otherwise.

    A graph is semiconnected if and only if for any pair of nodes, either one
    is reachable from the other, or they are mutually reachable.

    This function uses a theorem that states that a DAG is semiconnected
    if for any topological sort, for node $v_n$ in that sort, there is an
    edge $(v_i, v_{i+1})$. That allows us to check if a non-DAG `G` is
    semiconnected by condensing the graph: i.e. constructing a new graph `H`
    with nodes being the strongly connected components of `G`, and edges
    (scc_1, scc_2) if there is a edge $(v_1, v_2)$ in `G` for some
    $v_1 \in scc_1$ and $v_2 \in scc_2$. That results in a DAG, so we compute
    the topological sort of `H` and check if for every $n$ there is an edge
    $(scc_n, scc_{n+1})$.

    Parameters
    ----------
    G : NetworkX graph
        A directed graph.

    Returns
    -------
    semiconnected : bool
        True if the graph is semiconnected, False otherwise.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is undirected.

    NetworkXPointlessConcept
        If the graph is empty.

    Examples
    --------
    >>> G = nx.path_graph(4, create_using=nx.DiGraph())
    >>> print(nx.is_semiconnected(G))
    True
    >>> G = nx.DiGraph([(1, 2), (3, 2)])
    >>> print(nx.is_semiconnected(G))
    False

    See Also
    --------
    is_strongly_connected
    is_weakly_connected
    is_connected
    is_biconnected
    r   z-Connectivity is undefined for the null graph.Fc              3   J   K   | ]\  }}                     ||          V  d S )N)has_edge).0uvHs      l/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/networkx/algorithms/components/semiconnected.py	<genexpr>z#is_semiconnected.<locals>.<genexpr>G   s5      MMDAqqzz!QMMMMMM    )lennxNetworkXPointlessConceptis_weakly_connectedcondensationallr   topological_sort)Gr   s    @r   r   r   	   s    h 1vv{{);
 
 	
 !!$$ u
AMMMMHR5H5K5K,L,LMMMMMMr   )	__doc__networkxr   networkx.utilsr   r   __all___dispatchabler    r   r   <module>r      s{          8 8 8 8 8 8 8 8
 \""<N <N  #"<N <N <Nr   