
    cMhY\                        d Z ddlmZ ddlZddlZddlZddlmZmZm	Z	 ddl
Z
ddl
mZmZ ddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZmZ ddlmZ ddl m!Z! ddl"m#Z#m$Z$m%Z%m&Z&m'Z' erddl(m)Z)m*Z*m+Z+m,Z,m-Z- dAdZ.	 	 	 dBdCd#Z/ G d$ d          Z0 G d% d&e0          Z1 G d' d(e0          Z2 eed         )          	 	 	 	 	 	 	 dDdEd7            Z3 eed         )          d*ddej4        ej4        ddfdFd@            Z5dS )Gz parquet compat     )annotationsN)TYPE_CHECKINGAnyLiteral)catch_warningsfilterwarnings)_get_option)lib)import_optional_dependencyAbstractMethodError)doc)find_stack_level)check_dtype_backend)	DataFrame
get_option)_shared_docs)arrow_table_to_pandas)	IOHandles
get_handleis_fsspec_urlis_urlstringify_path)DtypeBackendFilePath
ReadBufferStorageOptionsWriteBufferenginestrreturnBaseImplc                d   | dk    rt          d          } | dk    r_t          t          g}d}|D ]:}	  |            c S # t          $ r}|dt	          |          z   z  }Y d}~3d}~ww xY wt          d|           | dk    rt                      S | dk    rt                      S t          d	          )
zreturn our implementationautozio.parquet.engine z
 - NzUnable to find a usable engine; tried using: 'pyarrow', 'fastparquet'.
A suitable version of pyarrow or fastparquet is required for parquet support.
Trying to import the above resulted in these errors:pyarrowfastparquetz.engine must be one of 'pyarrow', 'fastparquet')r   PyArrowImplFastParquetImplImportErrorr    
ValueError)r   engine_classes
error_msgsengine_classerrs        Q/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/pandas/io/parquet.py
get_enginer1   4   s    /00%7
* 	1 	1L1#|~~%%% 1 1 1gC00





1   
 
 	
 }}	=	 	    
E
F
FFs   	=
A&A!!A&rbFpath1FilePath | ReadBuffer[bytes] | WriteBuffer[bytes]fsr   storage_optionsStorageOptions | Nonemodeis_dirboolVtuple[FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], IOHandles[bytes] | None, Any]c                `   t          |           }|t          dd          }t          dd          }|'t          ||j                  r|rt	          d          nA|t          ||j        j                  rn$t          dt          |          j	                   t          |          r||Tt          d          }t          d          }	 |j                            |           \  }}n# t          |j        f$ r Y nw xY w|'t          d          } |j        j        |fi |pi \  }}n&|r$t!          |          r|d	k    rt          d
          d}	|sR|sPt          |t"                    r;t$          j                            |          st+          ||d|          }	d}|	j        }||	|fS )zFile handling for PyArrow.Nz
pyarrow.fsignore)errorsfsspecz8storage_options not supported with a pyarrow FileSystem.z9filesystem must be a pyarrow or fsspec FileSystem, not a r&   r2   z8storage_options passed with buffer, or non-supported URLFis_textr6   )r   r   
isinstance
FileSystemNotImplementedErrorspecAbstractFileSystemr+   type__name__r   from_uri	TypeErrorArrowInvalidcore	url_to_fsr   r    osr3   isdirr   handle)
r3   r5   r6   r8   r9   path_or_handlepa_fsr?   pahandless
             r0   _get_path_or_handlerU   V   s2    $D))N	~*<III+HXFFFB0@!A!A )N   Jr6;3Q$R$R-b*- -   ^$$ U"+I66B.|<<E%*%5%>%>t%D%D"NNr/   :/99F!6!6" "#2#8b" "B 
 U&"8"8 UDDLL STTTG(( ~s++( n--	( D%
 
 
  7B&&s   C. .DDc                  8    e Zd Zed	d            Zd
dZdddZdS )r"   dfr   r!   Nonec                N    t          | t                    st          d          d S )Nz+to_parquet only supports IO with DataFrames)rB   r   r+   )rW   s    r0   validate_dataframezBaseImpl.validate_dataframe   s0    "i(( 	LJKKK	L 	L    c                     t          |           Nr   )selfrW   r3   compressionkwargss        r0   writezBaseImpl.write       !$'''r[   Nc                     t          |           r]   r   )r^   r3   columnsr`   s       r0   readzBaseImpl.read   rb   r[   )rW   r   r!   rX   )rW   r   r]   )r!   r   )rH   
__module____qualname__staticmethodrZ   ra   re    r[   r0   r"   r"      sc        L L L \L( ( ( (( ( ( ( ( ( (r[   c                  J    e Zd ZddZ	 	 	 	 	 dddZdddej        ddfddZdS )r(   r!   rX   c                F    t          dd           dd l}dd l}|| _        d S )Nr&   z(pyarrow is required for parquet support.extrar   )r   pyarrow.parquet(pandas.core.arrays.arrow.extension_typesapi)r^   r&   pandass      r0   __init__zPyArrowImpl.__init__   sF    "G	
 	
 	
 	
 	 	8777r[   snappyNrW   r   r3   FilePath | WriteBuffer[bytes]r_   
str | Noneindexbool | Noner6   r7   partition_colslist[str] | Nonec                R   |                      |           d|                    dd           i}	|||	d<    | j        j        j        |fi |	}
|j        rBdt          j        |j                  i}|
j        j	        }i ||}|

                    |          }
t          |||d|d u          \  }}}t          |t          j                  rlt          |d          r\t          |j        t"          t$          f          r;t          |j        t$                    r|j                                        }n|j        }	 | | j        j        j        |
|f|||d| n | j        j        j        |
|f||d| ||                                 d S d S # ||                                 w w xY w)	Nschemapreserve_indexPANDAS_ATTRSwb)r6   r8   r9   name)r_   rx   
filesystem)r_   r   )rZ   poprp   Tablefrom_pandasattrsjsondumpsr{   metadatareplace_schema_metadatarU   rB   ioBufferedWriterhasattrr   r    bytesdecodeparquetwrite_to_datasetwrite_tableclose)r^   rW   r3   r_   rv   r6   rx   r   r`   from_pandas_kwargstabledf_metadataexisting_metadatamerged_metadatarQ   rT   s                   r0   ra   zPyArrowImpl.write   s(    	###.6

8T8R8R-S38/0**2DD1CDD8 	C)4:bh+?+?@K % 5B!2BkBO11/BBE.A+!-/
 /
 /
+ ~r'899	5//	5 >.e==	5
 .-u55 5!/!4!;!;!=!=!/!4	 )1 1" !,#1)      - ," !,)	 
    " #"w" #s   7<F F&Fuse_nullable_dtypesr:   dtype_backendDtypeBackend | lib.NoDefaultc                z   d|d<   i }	t          dd          }
|
dk    rd|	d<   t          |||d          \  }}}	  | j        j        j        |f|||d	|}t                      5  t          d
dt                     t          |||	          }d d d            n# 1 swxY w Y   |
dk    r|	                    dd          }|j
        j        r9d|j
        j        v r+|j
        j        d         }t          j        |          |_        |||                                 S S # ||                                 w w xY w)NTuse_pandas_metadatazmode.data_manager)silentarraysplit_blocksr2   )r6   r8   )rd   r   filtersr=   zmake_block is deprecated)r   to_pandas_kwargsF)copys   PANDAS_ATTRS)r	   rU   rp   r   
read_tabler   r   DeprecationWarningr   _as_managerr{   r   r   loadsr   r   )r^   r3   rd   r   r   r   r6   r   r`   r   managerrQ   rT   pa_tableresultr   s                   r0   re   zPyArrowImpl.read   s    )-$%1$???g/3^,.A+	/
 /
 /
+	 2tx'2%	 
  H  !! 
 
.&  
 /"/%5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 '!!++G%+@@' ;"ho&>>>"*/":?"KK#':k#:#:FL" #w" #s0   *D! &)BD! BD! "B#A&D! !D:r!   rX   rs   NNNN)rW   r   r3   rt   r_   ru   rv   rw   r6   r7   rx   ry   r!   rX   )r   r:   r   r   r6   r7   r!   r   )rH   rf   rg   rr   ra   r
   
no_defaultre   ri   r[   r0   r(   r(      s        	 	 	 	 #+!15+/@  @  @  @  @ J $)69n157  7  7  7  7  7  7 r[   r(   c                  <    e Zd ZddZ	 	 	 	 	 dddZ	 	 	 	 dddZdS )r)   r!   rX   c                6    t          dd          }|| _        d S )Nr'   z,fastparquet is required for parquet support.rl   )r   rp   )r^   r'   s     r0   rr   zFastParquetImpl.__init__+  s+     1!O
 
 
 r[   rs   NrW   r   r_   *Literal['snappy', 'gzip', 'brotli'] | Noner6   r7   c                  	 |                      |           d|v r|t          d          d|v r|                    d          }|d|d<   |t          d          t	          |          }t          |          rt          d          		fd|d<   nrt          d	          t          d
          5   | j        j	        ||f|||d| d d d            d S # 1 swxY w Y   d S )Npartition_onzYCannot use both partition_on and partition_cols. Use partition_cols for partitioning datahivefile_scheme9filesystem is not implemented for the fastparquet engine.r?   c                J     j         | dfi pi                                  S )Nr~   )open)r3   _r?   r6   s     r0   <lambda>z'FastParquetImpl.write.<locals>.<lambda>V  s8    +&+d3 3.4"3 3dff r[   	open_withz?storage_options passed with file object or non-fsspec file pathT)record)r_   write_indexr   )
rZ   r+   r   rD   r   r   r   r   rp   ra   )
r^   rW   r3   r_   rv   rx   r6   r   r`   r?   s
         `  @r0   ra   zFastParquetImpl.write3  s    	###V##(BK   V###ZZ77N%$*F=!!%K  
 d## 
	/99F# # # # #F;  	Q   4((( 	 	DHN (!+    	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	s   6CC #C c                   i }|                     dd          }|                     dt          j                  }	d|d<   |rt          d          |	t          j        urt          d          |t	          d          t          |          }d }
t          |          r)t          d          } |j        |d	fi |pi j	        |d
<   nNt          |t                    r9t          j                            |          st          |d	d|          }
|
j        }	  | j        j        |fi |} |j        d||d||
|
                                 S S # |
|
                                 w w xY w)Nr   Fr   pandas_nullszNThe 'use_nullable_dtypes' argument is not supported for the fastparquet enginezHThe 'dtype_backend' argument is not supported for the fastparquet enginer   r?   r2   r5   r@   )rd   r   ri   )r   r
   r   r+   rD   r   r   r   r   r5   rB   r    rN   r3   rO   r   rP   rp   ParquetFile	to_pandasr   )r^   r3   rd   r   r6   r   r`   parquet_kwargsr   r   rT   r?   parquet_files                r0   re   zFastParquetImpl.readh  s    *,$jj)>FF

?CNCC).~& 	%   ..%   !%K   d## 	"/99F#.6;tT#U#Uo>SQS#U#U#XN4  c"" 	"27==+>+> 	" !dE?  G >D	 /48/GGGGL)<)U'7UUfUU" #w" #s   "E E(r   r   )rW   r   r_   r   r6   r7   r!   rX   )NNNN)r6   r7   r!   r   )rH   rf   rg   rr   ra   re   ri   r[   r0   r)   r)   *  s|            CK153 3 3 3 3p 150  0  0  0  0  0  0 r[   r)   )r6   r$   rs   rW   r   $FilePath | WriteBuffer[bytes] | Noner_   ru   rv   rw   rx   ry   r   bytes | Nonec           	        t          |t                    r|g}t          |          }	|t          j                    n|}
 |	j        | |
f|||||d| |0t          |
t          j                  sJ |
                                S dS )a	  
    Write a DataFrame to the parquet format.

    Parameters
    ----------
    df : DataFrame
    path : str, path object, file-like object, or None, default None
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``write()`` function. If None, the result is
        returned as bytes. If a string, it will be used as Root Directory path
        when writing a partitioned dataset. The engine fastparquet does not
        accept file-like objects.
    engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
        Parquet library to use. If 'auto', then the option
        ``io.parquet.engine`` is used. The default ``io.parquet.engine``
        behavior is to try 'pyarrow', falling back to 'fastparquet' if
        'pyarrow' is unavailable.

        When using the ``'pyarrow'`` engine and no storage options are provided
        and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
        (e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
        Use the filesystem keyword with an instantiated fsspec filesystem
        if you wish to use its implementation.
    compression : {{'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}},
        default 'snappy'. Name of the compression to use. Use ``None``
        for no compression.
    index : bool, default None
        If ``True``, include the dataframe's index(es) in the file output. If
        ``False``, they will not be written to the file.
        If ``None``, similar to ``True`` the dataframe's index(es)
        will be saved. However, instead of being saved as values,
        the RangeIndex will be stored as a range in the metadata so it
        doesn't require much space and is faster. Other indexes will
        be included as columns in the file output.
    partition_cols : str or list, optional, default None
        Column names by which to partition the dataset.
        Columns are partitioned in the order they are given.
        Must be None if path is not a string.
    {storage_options}

    filesystem : fsspec or pyarrow filesystem, default None
        Filesystem object to use when reading the parquet file. Only implemented
        for ``engine="pyarrow"``.

        .. versionadded:: 2.1.0

    kwargs
        Additional keyword arguments passed to the engine

    Returns
    -------
    bytes if no path argument is provided else None
    N)r_   rv   rx   r6   r   )rB   r    r1   r   BytesIOra   getvalue)rW   r3   r   r_   rv   r6   rx   r   r`   implpath_or_bufs              r0   
to_parquetr     s    B .#&& *()fDAESWKDJ
	  %'	 	 	 	 	 |+rz22222##%%%tr[   FilePath | ReadBuffer[bytes]rd   r   bool | lib.NoDefaultr   r   r   &list[tuple] | list[list[tuple]] | Nonec           
         t          |          }	|t          j        ur4d}
|du r|
dz  }
t          j        |
t
          t                                 nd}t          |            |	j        | f||||||d|S )a  
    Load a parquet object from the file path, returning a DataFrame.

    Parameters
    ----------
    path : str, path object or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``read()`` function.
        The string could be a URL. Valid URL schemes include http, ftp, s3,
        gs, and file. For file URLs, a host is expected. A local file could be:
        ``file://localhost/path/to/table.parquet``.
        A file URL can also be a path to a directory that contains multiple
        partitioned parquet files. Both pyarrow and fastparquet support
        paths to directories as well as file URLs. A directory path could be:
        ``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``.
    engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
        Parquet library to use. If 'auto', then the option
        ``io.parquet.engine`` is used. The default ``io.parquet.engine``
        behavior is to try 'pyarrow', falling back to 'fastparquet' if
        'pyarrow' is unavailable.

        When using the ``'pyarrow'`` engine and no storage options are provided
        and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
        (e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
        Use the filesystem keyword with an instantiated fsspec filesystem
        if you wish to use its implementation.
    columns : list, default=None
        If not None, only these columns will be read from the file.
    {storage_options}

        .. versionadded:: 1.3.0

    use_nullable_dtypes : bool, default False
        If True, use dtypes that use ``pd.NA`` as missing value indicator
        for the resulting DataFrame. (only applicable for the ``pyarrow``
        engine)
        As new dtypes are added that support ``pd.NA`` in the future, the
        output with this option will change to use those dtypes.
        Note: this is an experimental option, and behaviour (e.g. additional
        support dtypes) may change without notice.

        .. deprecated:: 2.0

    dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0

    filesystem : fsspec or pyarrow filesystem, default None
        Filesystem object to use when reading the parquet file. Only implemented
        for ``engine="pyarrow"``.

        .. versionadded:: 2.1.0

    filters : List[Tuple] or List[List[Tuple]], default None
        To filter out data.
        Filter syntax: [[(column, op, val), ...],...]
        where op is [==, =, >, >=, <, <=, !=, in, not in]
        The innermost tuples are transposed into a set of filters applied
        through an `AND` operation.
        The outer list combines these sets of filters through an `OR`
        operation.
        A single list of tuples can also be used, meaning that no `OR`
        operation between set of filters is to be conducted.

        Using this argument will NOT result in row-wise filtering of the final
        partitions unless ``engine="pyarrow"`` is also specified.  For
        other engines, filtering is only performed at the partition level, that is,
        to prevent the loading of some row-groups and/or files.

        .. versionadded:: 2.1.0

    **kwargs
        Any additional kwargs are passed to the engine.

    Returns
    -------
    DataFrame

    See Also
    --------
    DataFrame.to_parquet : Create a parquet object that serializes a DataFrame.

    Examples
    --------
    >>> original_df = pd.DataFrame(
    ...     {{"foo": range(5), "bar": range(5, 10)}}
    ...    )
    >>> original_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> df_parquet_bytes = original_df.to_parquet()
    >>> from io import BytesIO
    >>> restored_df = pd.read_parquet(BytesIO(df_parquet_bytes))
    >>> restored_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> restored_df.equals(original_df)
    True
    >>> restored_bar = pd.read_parquet(BytesIO(df_parquet_bytes), columns=["bar"])
    >>> restored_bar
        bar
    0    5
    1    6
    2    7
    3    8
    4    9
    >>> restored_bar.equals(original_df[['bar']])
    True

    The function uses `kwargs` that are passed directly to the engine.
    In the following example, we use the `filters` argument of the pyarrow
    engine to filter the rows of the DataFrame.

    Since `pyarrow` is the default engine, we can omit the `engine` argument.
    Note that the `filters` argument is implemented by the `pyarrow` engine,
    which can benefit from multithreading and also potentially be more
    economical in terms of memory.

    >>> sel = [("foo", ">", 2)]
    >>> restored_part = pd.read_parquet(BytesIO(df_parquet_bytes), filters=sel)
    >>> restored_part
        foo  bar
    0    3    8
    1    4    9
    zYThe argument 'use_nullable_dtypes' is deprecated and will be removed in a future version.TzFUse dtype_backend='numpy_nullable' instead of use_nullable_dtype=True.)
stacklevelF)rd   r   r6   r   r   r   )	r1   r
   r   warningswarnFutureWarningr   r   re   )r3   r   rd   r6   r   r   r   r   r`   r   msgs              r0   read_parquetr     s    r fD#.00# 	 $&&XC 	c=5E5G5GHHHHH#&&&49	'/#	 	 	 	 	r[   )r   r    r!   r"   )Nr2   F)r3   r4   r5   r   r6   r7   r8   r    r9   r:   r!   r;   )Nr$   rs   NNNN)rW   r   r3   r   r   r    r_   ru   rv   rw   r6   r7   rx   ry   r   r   r!   r   )r3   r   r   r    rd   ry   r6   r7   r   r   r   r   r   r   r   r   r!   r   )6__doc__
__future__r   r   r   rN   typingr   r   r   r   r   r   pandas._config.configr	   pandas._libsr
   pandas.compat._optionalr   pandas.errorsr   pandas.util._decoratorsr   pandas.util._exceptionsr   pandas.util._validatorsr   rq   r   r   pandas.core.shared_docsr   pandas.io._utilr   pandas.io.commonr   r   r   r   r   pandas._typingr   r   r   r   r   r1   rU   r"   r(   r)   r   r   r   ri   r[   r0   <module>r      s     " " " " " " 				  				         
        
 . - - - - -       > > > > > > - - - - - - ' ' ' ' ' ' 4 4 4 4 4 4 7 7 7 7 7 7        1 0 0 0 0 0 1 1 1 1 1 1                            G G G GJ .2<' <' <' <' <'~
( 
( 
( 
( 
( 
( 
( 
(E  E  E  E  E ( E  E  E Pn  n  n  n  n h n  n  n b \"34555 26&-1'+U U U U 65Up \"34555  $-10325.6:q q q q 65q q qr[   