"""Test relaxation."""
import warnings
import numpy as np
from numpy.testing import TestCase, assert_almost_equal
import scipy
from scipy.sparse import spdiags, csr_matrix, bsr_matrix, eye
from scipy.sparse import SparseEfficiencyWarning
from scipy.linalg import solve

from pyamg.classical.split import RS
from pyamg.classical import ruge_stuben_solver
from pyamg.gallery import poisson, sprand, elasticity
from pyamg.relaxation.relaxation import gauss_seidel, jacobi, \
    block_jacobi, block_gauss_seidel, jacobi_ne, schwarz, sor, \
    gauss_seidel_indexed, polynomial, gauss_seidel_ne, \
    gauss_seidel_nr, \
    jacobi_indexed, cf_jacobi, fc_jacobi, cf_block_jacobi, fc_block_jacobi
from pyamg.util.utils import get_block_diag

# Ignore efficiency warnings
warnings.simplefilter('ignore', SparseEfficiencyWarning)


def check_raises(error, f, *args, **kwargs):
    try:
        f(*args, **kwargs)
    except error:
        pass
    else:
        fname = f.__name__
        raise Exception(f'{fname} should throw an error')


class TestCommonRelaxation(TestCase):
    def setUp(self):
        self.cases = []
        self.cases.append((gauss_seidel, (), {}))
        self.cases.append((jacobi, (), {}))
        self.cases.append((block_jacobi, (), {}))
        self.cases.append((block_gauss_seidel, (), {}))
        self.cases.append((jacobi_ne, (), {}))
        self.cases.append((schwarz, (), {}))
        self.cases.append((sor, (0.5,), {}))
        self.cases.append((gauss_seidel_indexed, ([1, 0],), {}))
        self.cases.append((polynomial, ([0.6, 0.1],), {}))
        self.cases.append((jacobi_indexed, ([1, 0],), {}))

    def test_single_precision(self):

        for method, args, kwargs in self.cases:
            A = poisson((4,), format='csr').astype('float32')
            b = np.arange(A.shape[0], dtype='float32')
            x = 0 * b
            method(A, x, b, *args, **kwargs)

    def test_double_precision(self):

        for method, args, kwargs in self.cases:
            A = poisson((4,), format='csr').astype('float64')
            b = np.arange(A.shape[0], dtype='float64')
            x = 0 * b
            method(A, x, b, *args, **kwargs)

    def test_strided_x(self):
        """Non-contiguous x should raise errors."""
        for method, args, kwargs in self.cases:
            A = poisson((4,), format='csr').astype('float64')
            b = np.arange(A.shape[0], dtype='float64')
            x = np.zeros(2 * A.shape[0])[::2]
            check_raises(ValueError, method, A, x, b, *args, **kwargs)

    def test_mixed_precision(self):
        """Mixed precision arguments should raise errors."""
        for method, args, kwargs in self.cases:
            A32 = poisson((4,), format='csr').astype('float32')
            b32 = np.arange(A32.shape[0], dtype='float32')
            x32 = 0 * b32

            A64 = poisson((4,), format='csr').astype('float64')
            b64 = np.arange(A64.shape[0], dtype='float64')
            x64 = 0 * b64

            check_raises(TypeError, method, A32, x32, b64, *args, **kwargs)
            check_raises(TypeError, method, A32, x64, b32, *args, **kwargs)
            check_raises(TypeError, method, A64, x32, b32, *args, **kwargs)
            check_raises(TypeError, method, A32, x64, b64, *args, **kwargs)
            check_raises(TypeError, method, A64, x64, b32, *args, **kwargs)
            check_raises(TypeError, method, A64, x32, b64, *args, **kwargs)

    def test_vector_sizes(self):
        """Incorrect vector sizes should raise errors."""
        for method, args, kwargs in self.cases:
            A = poisson((4,), format='csr').astype('float64')
            b4 = np.arange(4, dtype='float64')
            x4 = 0 * b4
            b5 = np.arange(5, dtype='float64')
            x5 = 0 * b5

            check_raises(ValueError, method, A, x4, b5, *args, **kwargs)
            check_raises(ValueError, method, A, x5, b4, *args, **kwargs)
            check_raises(ValueError, method, A, x5, b5, *args, **kwargs)

    def test_non_square_matrix(self):

        for method, args, kwargs in self.cases:
            A = poisson((4,), format='csr').astype('float64')
            A = A[:3]
            b = np.arange(A.shape[0], dtype='float64')
            x = np.ones(A.shape[1], dtype='float64')

            check_raises(ValueError, method, A, x, b, *args, **kwargs)


class TestRelaxation(TestCase):
    def test_polynomial(self):
        N = 3
        A = spdiags([2 * np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x0 = np.arange(N, dtype=A.dtype)
        x = x0.copy()
        b = np.zeros(N, dtype=A.dtype)

        r = (b - A * x0)
        polynomial(A, x, b, [-1.0 / 3.0])
        assert_almost_equal(x, x0 - 1.0 / 3.0 * r)

        x = x0.copy()
        polynomial(A, x, b, [0.2, -1])
        assert_almost_equal(x, x0 + 0.2 * A * r - r)

        x = x0.copy()
        polynomial(A, x, b, [0.2, -1])
        assert_almost_equal(x, x0 + 0.2 * A * r - r)

        x = x0.copy()
        polynomial(A, x, b, [-0.14285714, 1., -2.])
        assert_almost_equal(x, x0 - 0.14285714 * A * A * r + A * r - 2 * r)

        # polynomial() optimizes for the case x=0
        x = 0 * x0
        polynomial(A, x, b, [-1.0/3.0])
        assert_almost_equal(x, 1.0/3.0*b)

        x = 0*x0
        polynomial(A, x, b, [-0.14285714, 1., -2.])
        assert_almost_equal(x, 0.14285714*A*A*b + A*b - 2*b)

    def test_jacobi(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        jacobi(A, x, b)
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.zeros(N)
        b = np.arange(N).astype(np.float64)
        jacobi(A, x, b)
        assert_almost_equal(x, np.array([0.0, 0.5, 1.0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        jacobi(A, x, b)
        assert_almost_equal(x, np.array([0.5, 1.0, 0.5]))

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10], dtype=A.dtype)
        jacobi(A, x, b)
        assert_almost_equal(x, np.array([5]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10, 20, 30], dtype=A.dtype)
        jacobi(A, x, b)
        assert_almost_equal(x, np.array([5.5, 11.0, 15.5]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        x_copy = x.copy()
        b = np.array([10, 20, 30], dtype=A.dtype)
        jacobi(A, x, b, omega=1.0/3.0)
        assert_almost_equal(x,
                            2.0/3.0*x_copy + 1.0/3.0*np.array([5.5, 11.0, 15.5]))

    def test_jacobi_bsr(self):
        cases = []
        for N in [1, 2, 3, 4, 5, 6, 10]:
            cases.append(spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)],
                                 [0, -1, 1], N, N).tocsr())
            cases.append(elasticity.linear_elasticity((N, N))[0].tocsr())
            C = csr_matrix(np.random.rand(N, N))
            cases.append(C*C.T.conjugate())
            C = sprand(N*2, N*2, 0.3) + eye(N*2, N*2)
            cases.append(C*C.T.conjugate())

        for A in cases:
            divisors =\
                [n for n in range(1, A.shape[0]+1) if A.shape[0] % n == 0]

            x_csr = np.arange(A.shape[0]).astype(np.float64)
            b = x_csr**2
            jacobi(A, x_csr, b)

            for D in divisors:
                B = A.tobsr(blocksize=(D, D))
                x_bsr = np.arange(B.shape[0]).astype(np.float64)
                jacobi(B, x_bsr, b)
                assert_almost_equal(x_bsr, x_csr)

    def test_gauss_seidel_bsr(self):
        sweeps = ['forward', 'backward', 'symmetric']
        cases = []
        for N in [1, 2, 3, 4, 5, 6, 10]:
            cases.append(spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)],
                                 [0, -1, 1], N, N).tocsr())
            cases.append(elasticity.linear_elasticity((N, N))[0].tocsr())
            C = csr_matrix(np.random.rand(N, N))
            cases.append(C*C.T.conjugate())
            C = sprand(N*2, N*2, 0.3) + eye(N*2, N*2)
            cases.append(C*C.T.conjugate())

        for A in cases:
            for sweep in sweeps:
                divisors =\
                    [n for n in range(1, A.shape[0]+1) if A.shape[0] % n == 0]

                x_csr = np.arange(A.shape[0]).astype(np.float64)
                b = x_csr**2
                gauss_seidel(A, x_csr, b, sweep=sweep)

                for D in divisors:
                    B = A.tobsr(blocksize=(D, D))
                    x_bsr = np.arange(B.shape[0]).astype(np.float64)
                    gauss_seidel(B, x_bsr, b, sweep=sweep)
                    assert_almost_equal(x_bsr, x_csr)

    def test_gauss_seidel_gold(self):
        np.random.seed(0)

        cases = []
        cases.append(poisson((4,), format='csr'))
        cases.append(poisson((4, 4), format='csr'))

        temp = np.random.rand(4, 4)
        cases.append(csr_matrix(temp.T.dot(temp)))

        # reference implementation
        def gold(A, x, b, iterations, sweep):
            A = A.toarray()

            L = np.tril(A, k=-1)
            D = np.diag(np.diag(A))
            U = np.triu(A, k=1)

            for _i in range(iterations):
                if sweep == 'forward':
                    x = solve(L + D, (b - U.dot(x)))
                elif sweep == 'backward':
                    x = solve(U + D, (b - L.dot(x)))
                else:
                    x = solve(L + D, (b - U.dot(x)))
                    x = solve(U + D, (b - L.dot(x)))
            return x

        for A in cases:

            b = np.random.rand(A.shape[0], 1)
            x = np.random.rand(A.shape[0], 1)

            x_copy = x.copy()
            gauss_seidel(A, x, b, iterations=1, sweep='forward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='forward'))

            x_copy = x.copy()
            gauss_seidel(A, x, b, iterations=1, sweep='backward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='backward'))

            x_copy = x.copy()
            gauss_seidel(A, x, b, iterations=1, sweep='symmetric')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='symmetric'))

    def test_gauss_seidel_csr(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel(A, x, b)
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel(A, x, b)
        assert_almost_equal(x, np.array([1.0/2.0, 5.0/4.0, 5.0/8.0]))

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel(A, x, b, sweep='backward')
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel(A, x, b, sweep='backward')
        assert_almost_equal(x, np.array([1.0/8.0, 1.0/4.0, 1.0/2.0]))

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10], dtype=A.dtype)
        gauss_seidel(A, x, b)
        assert_almost_equal(x, np.array([5]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10, 20, 30], dtype=A.dtype)
        gauss_seidel(A, x, b)
        assert_almost_equal(x, np.array([11.0/2.0, 55.0/4, 175.0/8.0]))

        # forward and backward passes should give same result with
        # x=np.ones(N),b=np.zeros(N)
        N = 100
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.ones(N)
        b = np.zeros(N)
        gauss_seidel(A, x, b, iterations=200, sweep='forward')
        resid1 = np.linalg.norm(A*x, 2)
        x = np.ones(N)
        gauss_seidel(A, x, b, iterations=200, sweep='backward')
        resid2 = np.linalg.norm(A*x, 2)
        assert resid1 < 0.01
        assert resid2 < 0.01
        assert_almost_equal(resid1, resid2)

    def test_gauss_seidel_indexed(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel_indexed(A, x, b, [0])
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel_indexed(A, x, b, [0, 1, 2])
        assert_almost_equal(x, np.array([1.0/2.0, 5.0/4.0, 5.0/8.0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel_indexed(A, x, b, [2, 1, 0], sweep='backward')
        assert_almost_equal(x, np.array([1.0/2.0, 5.0/4.0, 5.0/8.0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel_indexed(A, x, b, [0, 1, 2], sweep='backward')
        assert_almost_equal(x, np.array([1.0/8.0, 1.0/4.0, 1.0/2.0]))

        N = 4
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.ones(N)
        b = np.zeros(N)
        gauss_seidel_indexed(A, x, b, [0, 3])
        assert_almost_equal(x, np.array([1.0/2.0, 1.0, 1.0, 1.0/2.0]))

        N = 4
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.ones(N)
        b = np.zeros(N)
        gauss_seidel_indexed(A, x, b, [0, 0])
        assert_almost_equal(x, np.array([1.0/2.0, 1.0, 1.0, 1.0]))

    def test_jacobi_indexed(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        jacobi_indexed(A, x, b, [0])
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        jacobi_indexed(A, x, b, [0, 1, 2])
        assert_almost_equal(x, np.array([0.5, 1.0, 0.5]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        jacobi_indexed(A, x, b, [2, 1, 0])
        assert_almost_equal(x, np.array([0.5, 1.0, 0.5]))

        N = 4
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        x = np.ones(N)
        b = np.zeros(N)
        jacobi_indexed(A, x, b, [0, 3])
        assert_almost_equal(x, np.array([0.5, 1.0, 1.0, 0.5]))

        N = 4
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.ones(N)
        b = np.zeros(N)
        jacobi_indexed(A, x, b, [0, 0])
        assert_almost_equal(x, np.array([1.0/2.0, 1.0, 1.0, 1.0]))

    def test_jacobi_ne(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.zeros(N)
        b = np.arange(N).astype(np.float64)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, np.array([-1./6., -1./15., 19./30.]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, np.array([2./5., 7./5., 4./5.]))

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10], dtype=A.dtype)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, np.array([5]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10, 20, 30], dtype=A.dtype)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, np.array([16./15., 1./15., (9 + 7./15.)]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        x_copy = x.copy()
        b = np.array([10, 20, 30], dtype=A.dtype)
        jacobi_ne(A, x, b, omega=1.0/3.0)
        xtrue = 2.0/3.0*x_copy + 1.0/3.0*np.array([16./15., 1./15., (9 + 7./15.)])
        assert_almost_equal(x, xtrue)

    def test_gauss_seidel_ne_bsr(self):
        for N in [1, 2, 3, 4, 5, 6, 10]:
            A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                        N, N).tocsr()

            divisors = [n for n in range(1, N+1) if N % n == 0]

            x_csr = np.arange(N).astype(np.float64)
            b = x_csr**2
            gauss_seidel_ne(A, x_csr, b)

            for D in divisors:
                B = A.tobsr(blocksize=(D, D))
                x_bsr = np.arange(N).astype(np.float64)
                gauss_seidel_ne(B, x_bsr, b)
                assert_almost_equal(x_bsr, x_csr)

    def test_gauss_seidel_ne_new(self):
        np.random.seed(0)

        cases = []
        cases.append(poisson((4,), format='csr'))
        cases.append(poisson((4, 4), format='csr'))

        temp = np.random.rand(4, 4)
        cases.append(csr_matrix(temp.T.dot(temp)))

        # reference implementation
        def gold(A, x, b, iterations, sweep):
            A = A.toarray()
            AA = A.dot(A.T)

            L = np.tril(AA, k=0)
            U = np.triu(AA, k=0)

            for _i in range(iterations):
                if sweep == 'forward':
                    x = x + A.T.dot(solve(L, (b - A.dot(x))))
                elif sweep == 'backward':
                    x = x + A.T.dot(solve(U, (b - A.dot(x))))
                else:
                    x = x + A.T.dot(solve(L, (b - A.dot(x))))
                    x = x + A.T.dot(solve(U, (b - A.dot(x))))
            return x

        for A in cases:

            b = np.random.rand(A.shape[0], 1)
            x = np.random.rand(A.shape[0], 1)

            x_copy = x.copy()
            gauss_seidel_ne(A, x, b, iterations=1, sweep='forward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='forward'))

            x_copy = x.copy()
            gauss_seidel_ne(A, x, b, iterations=1, sweep='backward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='backward'))

            x_copy = x.copy()
            gauss_seidel_ne(A, x, b, iterations=1, sweep='symmetric')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='symmetric'))

    def test_gauss_seidel_ne_csr(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel_ne(A, x, b)
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N).astype(np.float64)
        b = np.zeros(N)
        gauss_seidel_ne(A, x, b)
        assert_almost_equal(x, np.array([4./15., 8./5., 4./5.]))

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.zeros(N, dtype=A.dtype)
        gauss_seidel_ne(A, x, b, sweep='backward')
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.zeros(N, dtype=A.dtype)
        gauss_seidel_ne(A, x, b, sweep='backward')
        assert_almost_equal(x, np.array([2./5., 4./5., 6./5.]))

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10], dtype=A.dtype)
        gauss_seidel_ne(A, x, b)
        assert_almost_equal(x, np.array([5]))

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10], dtype=A.dtype)
        gauss_seidel_ne(A, x, b, sweep='backward')
        assert_almost_equal(x, np.array([5]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.arange(N, dtype=A.dtype)
        b = np.array([10, 20, 30], dtype=A.dtype)
        gauss_seidel_ne(A, x, b)
        assert_almost_equal(x, np.array([-2./5., -2./5., (14 + 4./5.)]))

        # forward and backward passes should give same result with
        # x=np.ones(N),b=np.zeros(N)
        N = 100
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        x = np.ones(N)
        b = np.zeros(N)
        gauss_seidel_ne(A, x, b, iterations=200, sweep='forward')
        resid1 = np.linalg.norm(A*x, 2)
        x = np.ones(N)
        gauss_seidel_ne(A, x, b, iterations=200, sweep='backward')
        resid2 = np.linalg.norm(A*x, 2)
        assert resid1 < 0.2
        assert resid2 < 0.2
        assert_almost_equal(resid1, resid2)

    def test_gauss_seidel_nr_bsr(self):

        for N in [1, 2, 3, 4, 5, 6, 10]:
            A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)],
                        [0, -1, 1], N, N).tocsr()

            divisors = [n for n in range(1, N+1) if N % n == 0]

            x_csr = np.arange(N).astype(np.float64)
            b = x_csr**2
            gauss_seidel_nr(A, x_csr, b)

            for D in divisors:
                B = A.tobsr(blocksize=(D, D))
                x_bsr = np.arange(N).astype(np.float64)
                gauss_seidel_nr(B, x_bsr, b)
                assert_almost_equal(x_bsr, x_csr)

    def test_gauss_seidel_nr(self):
        np.random.seed(0)

        cases = []
        cases.append(poisson((4,), format='csr'))
        cases.append(poisson((4, 4), format='csr'))

        temp = np.random.rand(1, 1)
        cases.append(csr_matrix(temp))

        temp = np.random.rand(2, 2)
        cases.append(csr_matrix(temp))

        temp = np.random.rand(4, 4)
        cases.append(csr_matrix(temp))

        # reference implementation
        def gold(A, x, b, iterations, sweep):
            A = A.toarray()
            AH = A.conj().T
            AA = AH.dot(A)

            L = np.tril(AA, k=0)
            U = np.triu(AA, k=0)

            for _i in range(iterations):
                if sweep == 'forward':
                    x = x + (solve(L, AH.dot(b - A.dot(x))))
                elif sweep == 'backward':
                    x = x + (solve(U, AH.dot(b - A.dot(x))))
                else:
                    x = x + (solve(L, AH.dot(b - A.dot(x))))
                    x = x + (solve(U, AH.dot(b - A.dot(x))))
            return x

        for A in cases:

            b = np.random.rand(A.shape[0], 1)
            x = np.random.rand(A.shape[0], 1)

            x_copy = x.copy()
            gauss_seidel_nr(A, x, b, iterations=1, sweep='forward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='forward'))

            x_copy = x.copy()
            gauss_seidel_nr(A, x, b, iterations=1, sweep='backward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='backward'))

            x_copy = x.copy()
            gauss_seidel_nr(A, x, b, iterations=1, sweep='symmetric')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='symmetric'))

        # forward and backward passes should give same result with
        # x=np.ones(N),b=np.zeros(N)
        N = 100
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)],
                    [0, -1, 1], N, N, format='csr')
        x = np.ones(N)
        b = np.zeros(N)
        gauss_seidel_nr(A, x, b, iterations=200, sweep='forward')
        resid1 = np.linalg.norm(A*x, 2)
        x = np.ones(N)
        gauss_seidel_nr(A, x, b, iterations=200, sweep='backward')
        resid2 = np.linalg.norm(A*x, 2)
        assert resid1 < 0.2
        assert resid2 < 0.2
        assert_almost_equal(resid1, resid2)

    def test_schwarz_gold(self):
        np.random.seed(0)

        cases = []
        cases.append(poisson((4,), format='csr'))
        cases.append(poisson((4, 4), format='csr'))
        A = poisson((8, 8), format='csr')
        A.data[0] = 10.0
        A.data[1] = -0.5
        A.data[3] = -0.5
        cases.append(A)

        temp = np.random.rand(1, 1)
        cases.append(csr_matrix(temp.T.dot(temp)))

        temp = np.random.rand(2, 2)
        cases.append(csr_matrix(temp.T.dot(temp)))

        temp = np.random.rand(4, 4)
        cases.append(csr_matrix(temp.T.dot(temp)))

        # reference implementation
        def gold(A, x, b, iterations, sweep='forward'):
            A = csr_matrix(A)
            n = A.shape[0]

            # Default is point-wise iteration with each subdomain a point's
            # neighborhood in the matrix graph
            subdomains =\
                [A.indices[A.indptr[i]:A.indptr[i+1]] for i in range(n)]

            # extract each subdomain's block from the matrix
            subblocks = []
            for i in range(len(subdomains)):
                blkA = (A[subdomains[i], :]).tocsc()
                blkA = blkA[:, subdomains[i]].toarray()
                blkAinv = scipy.linalg.pinv(blkA)
                subblocks.append(blkAinv)

            if sweep == 'forward':
                indices = np.arange(len(subdomains))
            elif sweep == 'backward':
                indices = np.arange(len(subdomains)-1, -1, -1)
            elif sweep == 'symmetric':
                indices1 = np.arange(len(subdomains))
                indices2 = np.arange(len(subdomains)-1, -1, -1)
                indices = np.concatenate((indices1, indices2))

            # Multiplicative Schwarz iterations
            for _j in range(iterations):
                for i in indices:
                    si = subdomains[i]
                    x[si] = np.dot(subblocks[i], (b[si] - A[si, :]*x)) + x[si]

            return x

        for A in cases:

            b = np.random.rand(A.shape[0], 1)
            x = np.random.rand(A.shape[0], 1)

            x_copy = x.copy()
            schwarz(A, x, b, iterations=1, sweep='forward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='forward'))

            x_copy = x.copy()
            schwarz(A, x, b, iterations=1, sweep='backward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='backward'))

            x_copy = x.copy()
            schwarz(A, x, b, iterations=1, sweep='symmetric')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='symmetric'))


# Test complex arithmetic
class TestComplexRelaxation(TestCase):
    def test_jacobi(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        b = np.zeros(N).astype(A.dtype)
        jacobi(A, x, b)
        assert_almost_equal(x, np.array([0]))

        x = np.array([1.0 + 1.0j])
        b = np.array([-1.0 + 1.0j])
        omega = 4.0 - 1.0j
        jacobi(A, x, b, omega=omega)
        assert_almost_equal(x, np.array([-3.5]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.zeros(N).astype(A.dtype)
        b = np.arange(N).astype(A.dtype)
        b = b + 1.0j*b
        soln = np.array([0.0, 0.5, 1.0])
        jacobi(A, x, b)
        assert_almost_equal(x, soln)

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        soln = np.array([0.5 + 0.5j, 1.0 + 1.0j, 0.5+0.5j])
        jacobi(A, x, b)
        assert_almost_equal(x, soln)

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        b = np.array([10]).astype(A.dtype)
        jacobi(A, x, b)
        assert_almost_equal(x, np.array([2.5 - 2.5j]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.array([10, 20, 30]).astype(A.dtype)
        soln = np.array([3.0-2.0j, 6.0-4.0j, 8.0-7.0j])
        jacobi(A, x, b)
        assert_almost_equal(x, soln)

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        x_copy = x.copy()
        b = np.array([10, 20, 30]).astype(A.dtype)
        soln = 2.0/3.0*x_copy + 1.0/3.0*np.array([3.0-2.0j, 6.0-4.0j, 8.0-7.0j])
        jacobi(A, x, b, omega=1.0/3.0)
        assert_almost_equal(x, soln)

    def test_jacobi_bsr(self):
        cases = []
        for N in [1, 2, 3, 4, 5, 6, 10]:
            #
            C = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                        N, N).tocsr()
            C.data = C.data + 1.0j*1e-3*np.random.rand(C.data.shape[0],)
            cases.append(C)
            #
            cases.append(1.0j*elasticity.linear_elasticity((N, N))[0].tocsr())
            #
            C = csr_matrix(np.random.rand(N, N) + 1.0j*np.random.rand(N, N))
            cases.append(C*C.T.conjugate())
            #
            C = sprand(N*2, N*2, 0.3) + 1.0j*sprand(N*2, N*2, 0.3) +\
                eye(N*2, N*2)
            cases.append(C*C.T.conjugate())

        for A in cases:
            n = A.shape[0]
            divisors = [i for i in range(1, n+1) if n % i == 0]

            x0 = (np.arange(n) + 1.0j*1e-3*np.random.rand(n,)).astype(A.dtype)
            x_csr = x0.copy()
            b = x_csr**2
            jacobi(A, x_csr, b)

            for D in divisors:
                B = A.tobsr(blocksize=(D, D))
                x_bsr = x0.copy()
                jacobi(B, x_bsr, b)
                assert_almost_equal(x_bsr, x_csr)

    def test_gauss_seidel_bsr(self):
        sweeps = ['forward', 'backward', 'symmetric']
        cases = []
        for N in [1, 2, 3, 4, 5, 6, 10]:
            #
            C = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                        N, N).tocsr()
            C.data = C.data + 1.0j*1e-3*np.random.rand(C.data.shape[0],)
            cases.append(C)
            #
            cases.append(1.0j*elasticity.linear_elasticity((N, N))[0].tocsr())
            #
            C = csr_matrix(np.random.rand(N, N) + 1.0j*np.random.rand(N, N))
            cases.append(C*C.T.conjugate())
            #
            C = sprand(N*2, N*2, 0.3) + 1.0j*sprand(N*2, N*2, 0.3) +\
                eye(N*2, N*2)
            cases.append(C*C.T.conjugate())

        for A in cases:
            n = A.shape[0]
            for sweep in sweeps:
                divisors = [i for i in range(1, n+1) if n % i == 0]

                x0 = (np.arange(n) + 1.0j*1e-3*np.random.rand(n,)).astype(A.dtype)
                x_csr = x0.copy()
                b = x_csr**2
                gauss_seidel(A, x_csr, b, sweep=sweep)

                for D in divisors:
                    B = A.tobsr(blocksize=(D, D))
                    x_bsr = x0.copy()
                    gauss_seidel(B, x_bsr, b, sweep=sweep)
                    assert_almost_equal(x_bsr, x_csr)

    def test_schwarz_gold(self):
        np.random.seed(0)

        cases = []
        A = poisson((4,), format='csr')
        A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)
        cases.append(A)
        A = poisson((4, 4), format='csr')
        A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)
        cases.append(A)

        temp = np.random.rand(1, 1) + 1.0j*np.random.rand(1, 1)
        cases.append(csr_matrix(temp.conj().T.dot(temp)))

        temp = np.random.rand(2, 2) + 1.0j*np.random.rand(2, 2)
        cases.append(csr_matrix(temp.conj().T.dot(temp)))

        temp = np.random.rand(4, 4) + 1.0j*np.random.rand(4, 4)
        cases.append(csr_matrix(temp.conj().T.dot(temp)))

        # reference implementation
        def gold(A, x, b, iterations):
            A = csr_matrix(A)
            n = A.shape[0]

            # Default is point-wise iteration with each subdomain a point's
            # neighborhood in the matrix graph
            subdomains =\
                [A.indices[A.indptr[i]:A.indptr[i+1]] for i in range(n)]

            # extract each subdomain's block from the matrix
            subblocks = []
            for i in range(len(subdomains)):
                blkA = (A[subdomains[i], :]).tocsc()
                blkA = blkA[:, subdomains[i]].toarray()
                blkAinv = scipy.linalg.pinv(blkA)
                subblocks.append(blkAinv)

            # Multiplicative Schwarz iterations
            for _j in range(iterations):
                for i in range(len(subdomains)):
                    si = subdomains[i]
                    x[si] = np.dot(subblocks[i], (b[si] - A[si, :]*x)) + x[si]
            return x

        for A in cases:

            n = A.shape[0]
            b = np.random.rand(n, 1) +\
                1.0j*np.random.rand(n, 1).astype(A.dtype)
            x = np.random.rand(n, 1) +\
                1.0j*np.random.rand(n, 1).astype(A.dtype)

            x_copy = x.copy()
            schwarz(A, x, b, iterations=1)
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1))

    def test_gauss_seidel_new(self):
        np.random.seed(0)

        cases = []
        A = poisson((4,), format='csr')
        A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)
        cases.append(A)
        A = poisson((4, 4), format='csr')
        A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)
        cases.append(A)

        temp = np.random.rand(4, 4) + 1.0j*np.random.rand(4, 4)
        cases.append(csr_matrix(temp.conj().T.dot(temp)))

        # reference implementation
        def gold(A, x, b, iterations, sweep):
            A = A.toarray()

            L = np.tril(A, k=-1)
            D = np.diag(np.diag(A))
            U = np.triu(A, k=1)

            for _i in range(iterations):
                if sweep == 'forward':
                    x = solve(L + D, (b - U.dot(x)))
                elif sweep == 'backward':
                    x = solve(U + D, (b - L.dot(x)))
                else:
                    x = solve(L + D, (b - U.dot(x)))
                    x = solve(U + D, (b - L.dot(x)))
            return x

        for A in cases:
            n = A.shape[0]
            b = np.random.rand(n, 1) + 1.0j*np.random.rand(n, 1).astype(A.dtype)
            x = np.random.rand(n, 1) + 1.0j*np.random.rand(n, 1).astype(A.dtype)

            # Gauss-Seidel Tests
            x_copy = x.copy()
            gauss_seidel(A, x, b, iterations=1, sweep='forward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='forward'))

            x_copy = x.copy()
            gauss_seidel(A, x, b, iterations=1, sweep='backward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='backward'))

            x_copy = x.copy()
            gauss_seidel(A, x, b, iterations=1, sweep='symmetric')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='symmetric'))

            ##
            # Indexed Gauss-Seidel Tests
            x_copy = x.copy()
            gauss_seidel_indexed(A, x, b, indices=np.arange(A.shape[0]),
                                 iterations=1, sweep='forward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='forward'))

            x_copy = x.copy()
            gauss_seidel_indexed(A, x, b, indices=np.arange(A.shape[0]),
                                 iterations=1, sweep='backward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='backward'))

            x_copy = x.copy()
            gauss_seidel_indexed(A, x, b, indices=np.arange(A.shape[0]),
                                 iterations=1, sweep='symmetric')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='symmetric'))

    def test_gauss_seidel_csr(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel(A, x, b)
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        soln = np.array([1.0/2.0, 5.0/4.0, 5.0/8.0])
        soln = soln + 1.0j*soln
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel(A, x, b)
        assert_almost_equal(x, soln)

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel(A, x, b, sweep='backward')
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        soln = np.array([1.0/8.0, 1.0/4.0, 1.0/2.0])
        soln = soln + 1.0j*soln
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel(A, x, b, sweep='backward')
        assert_almost_equal(x, soln)

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        b = np.array([10]).astype(A.dtype)
        gauss_seidel(A, x, b)
        assert_almost_equal(x, np.array([2.5 - 2.5j]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        soln = np.array([3.0 - 2.0j, 7.5 - 5.0j, 11.25 - 10.0j])
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.array([10, 20, 30]).astype(A.dtype)
        gauss_seidel(A, x, b)
        assert_almost_equal(x, soln)

        # forward and backward passes should give same result with
        # x=np.ones(N),b=np.zeros(N)
        N = 100
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.ones(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel(A, x, b, iterations=200, sweep='forward')
        resid1 = np.linalg.norm(A*x, 2)
        x = np.ones(N).astype(A.dtype)
        x = x + 1.0j*x
        gauss_seidel(A, x, b, iterations=200, sweep='backward')
        resid2 = np.linalg.norm(A*x, 2)
        assert resid1 < 0.03
        assert resid2 < 0.03
        assert_almost_equal(resid1, resid2)

    def test_jacobi_ne(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        b = np.zeros(N).astype(A.dtype)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        soln = np.array([-1./6., -1./15., 19./30.])
        x = np.zeros(N).astype(A.dtype)
        b = np.arange(N).astype(A.dtype)
        b = b + 1.0j*b
        jacobi_ne(A, x, b)
        assert_almost_equal(x, soln)

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        soln = np.array([2./5. + 2.0j/5., 7./5. + 7.0j/5., 4./5. + 4.0j/5.])
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, soln)

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        b = np.array([10]).astype(A.dtype)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, np.array([2.5 - 2.5j]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        soln = np.array([11./15. + 1.0j/15.,
                         11./15. + 31.0j/15,
                         77./15. - 53.0j/15.])
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.array([10, 20, 30]).astype(A.dtype)
        jacobi_ne(A, x, b)
        assert_almost_equal(x, soln)

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1], N, N,
                    format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.array([10, 20, 30]).astype(A.dtype)
        x_copy = x.copy()
        solnpart = np.array([11./15. + 1.0j/15.,
                             11./15. + 31.0j/15,
                             77./15. - 53.0j/15.])
        soln = 2.0/3.0*x_copy + 1.0/3.0*solnpart

        jacobi_ne(A, x, b, omega=1.0/3.0)
        assert_almost_equal(x, soln)

    def test_gauss_seidel_ne_bsr(self):
        for N in [1, 2, 3, 4, 5, 6, 10]:
            A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                        N, N).tocsr()
            A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)

            divisors = [n for n in range(1, N+1) if N % n == 0]

            x_csr = (np.arange(N) + 1.0j*1e-3*np.random.rand(N,)).astype(A.dtype)
            x_bsr = x_csr.copy()
            b = x_csr**2
            gauss_seidel_ne(A, x_csr, b)

            for D in divisors:
                B = A.tobsr(blocksize=(D, D))
                x_bsr_temp = x_bsr.copy()
                gauss_seidel_ne(B, x_bsr_temp, b)
                assert_almost_equal(x_bsr_temp, x_csr)

    def test_gauss_seidel_ne_new(self):
        np.random.seed(0)

        cases = []
        A = poisson((4,), format='csr')
        A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)
        cases.append(A)
        A = poisson((4, 4), format='csr')
        A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)
        cases.append(A.tobsr(blocksize=(2, 2)))

        temp = np.random.rand(4, 4) + 1.0j*np.random.rand(4, 4)
        cases.append(csr_matrix(temp.T.dot(temp)))

        # reference implementation
        def gold(A, x, b, iterations, sweep):
            A = A.toarray()
            AH = A.conj().T
            AA = A.dot(AH)

            L = np.tril(AA, k=0)
            U = np.triu(AA, k=0)

            for _i in range(iterations):
                if sweep == 'forward':
                    x = x + AH.dot(solve(L, (b - A.dot(x))))
                elif sweep == 'backward':
                    x = x + AH.dot(solve(U, (b - A.dot(x))))
                else:
                    x = x + AH.dot(solve(L, (b - A.dot(x))))
                    x = x + AH.dot(solve(U, (b - A.dot(x))))
            return x

        for A in cases:
            n = A.shape[0]
            b = np.random.rand(n, 1) +\
                1.0j*np.random.rand(n, 1).astype(A.dtype)
            x = np.random.rand(n, 1) +\
                1.0j*np.random.rand(n, 1).astype(A.dtype)

            x_copy = x.copy()
            gauss_seidel_ne(A, x, b, iterations=1, sweep='forward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='forward'))

            x_copy = x.copy()
            gauss_seidel_ne(A, x, b, iterations=1, sweep='backward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='backward'))

            x_copy = x.copy()
            gauss_seidel_ne(A, x, b, iterations=1, sweep='symmetric')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='symmetric'))

    def test_gauss_seidel_ne_csr(self):
        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        A.data = A.data + 1.0j*A.data
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel_ne(A, x, b)
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        A.data = A.data + 1.0j*A.data
        soln = np.array([4./15., 8./5., 4./5.])
        soln = soln + 1.0j*soln
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel_ne(A, x, b)
        assert_almost_equal(x, soln)

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel_ne(A, x, b, sweep='backward')
        assert_almost_equal(x, np.array([0]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        A.data = A.data + 1.0j*A.data
        soln = np.array([2./5., 4./5., 6./5.])
        soln = soln + 1.0j*soln
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel_ne(A, x, b, sweep='backward')
        assert_almost_equal(x, soln)

        N = 1
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.arange(N).astype(A.dtype)
        b = np.array([10]).astype(A.dtype)
        gauss_seidel_ne(A, x, b)
        assert_almost_equal(x, np.array([2.5 - 2.5j]))

        N = 3
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        A.data = A.data + 1.0j*A.data
        soln = np.array([-1./15.+0.6j, 0.6+2.6j, 7.8-6.2j])
        x = np.arange(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.array([10, 20, 30]).astype(A.dtype)
        gauss_seidel_ne(A, x, b)
        assert_almost_equal(x, soln)

        # forward and backward passes should give same result with
        # x=np.ones(N),b=np.zeros(N)
        N = 100
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.ones(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel_ne(A, x, b, iterations=200, sweep='forward')
        resid1 = np.linalg.norm(A*x, 2)

        x = np.ones(N).astype(A.dtype)
        x = x + 1.0j*x
        gauss_seidel_ne(A, x, b, iterations=200, sweep='backward')
        resid2 = np.linalg.norm(A*x, 2)
        assert resid1 < 0.3
        assert resid2 < 0.3
        assert_almost_equal(resid1, resid2)

    def test_gauss_seidel_nr_bsr(self):
        for N in [1, 2, 3, 4, 5, 6, 10]:
            A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                        N, N).tocsr()
            A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)

            divisors = [n for n in range(1, N+1) if N % n == 0]

            x_csr = (np.arange(N) + 1.0j*1e-3*np.random.rand(N,)).astype(A.dtype)
            x_bsr = x_csr.copy()
            b = x_csr**2
            gauss_seidel_nr(A, x_csr, b)

            for D in divisors:
                B = A.tobsr(blocksize=(D, D))
                x_bsr_temp = x_bsr.copy()
                gauss_seidel_nr(B, x_bsr_temp, b)
                assert_almost_equal(x_bsr_temp, x_csr)

    def test_gauss_seidel_nr(self):
        np.random.seed(0)

        cases = []
        A = poisson((4,), format='csr')
        A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)
        cases.append(A)
        A = poisson((4, 4), format='csr')
        A.data = A.data + 1.0j*1e-3*np.random.rand(A.data.shape[0],)
        cases.append(A.tobsr(blocksize=(2, 2)))

        temp = np.random.rand(1, 1) + 1.0j*np.random.rand(1, 1)
        cases.append(csr_matrix(temp))
        temp = np.random.rand(2, 2) + 1.0j*np.random.rand(2, 2)
        cases.append(csr_matrix(temp))
        temp = np.random.rand(4, 4) + 1.0j*np.random.rand(4, 4)
        cases.append(csr_matrix(temp))

        # reference implementation
        def gold(A, x, b, iterations, sweep):
            A = A.todense()
            AH = np.conjugate(A).T
            AA = AH.dot(A)

            L = np.tril(AA, k=0)
            U = np.triu(AA, k=0)

            for _i in range(iterations):
                if sweep == 'forward':
                    x = x + (solve(L, AH.dot(b - A.dot(x))))
                elif sweep == 'backward':
                    x = x + (solve(U, AH.dot(b - A.dot(x))))
                else:
                    x = x + (solve(L, AH.dot(b - A.dot(x))))
                    x = x + (solve(U, AH.dot(b - A.dot(x))))
            return x

        for A in cases:
            n = A.shape[0]
            b = np.random.rand(n, 1) + 1.0j*np.random.rand(n, 1).astype(A.dtype)
            x = np.random.rand(n, 1) + 1.0j*np.random.rand(n, 1).astype(A.dtype)

            x_copy = x.copy()
            gauss_seidel_nr(A, x, b, iterations=1, sweep='forward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='forward'))

            x_copy = x.copy()
            gauss_seidel_nr(A, x, b, iterations=1, sweep='backward')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='backward'))

            x_copy = x.copy()
            gauss_seidel_nr(A, x, b, iterations=1, sweep='symmetric')
            assert_almost_equal(x, gold(A, x_copy, b, iterations=1,
                                        sweep='symmetric'))

        # forward and backward passes should give same result with
        # x=np.ones(N),b=np.zeros(N)
        N = 100
        A = spdiags([2*np.ones(N), -np.ones(N), -np.ones(N)], [0, -1, 1],
                    N, N, format='csr')
        A.data = A.data + 1.0j*A.data
        x = np.ones(N).astype(A.dtype)
        x = x + 1.0j*x
        b = np.zeros(N).astype(A.dtype)
        gauss_seidel_nr(A, x, b, iterations=200, sweep='forward')
        resid1 = np.linalg.norm(A*x, 2)

        x = np.ones(N).astype(A.dtype)
        x = x + 1.0j*x
        gauss_seidel_nr(A, x, b, iterations=200, sweep='backward')
        resid2 = np.linalg.norm(A*x, 2)
        assert resid1 < 0.3
        assert resid2 < 0.3
        assert_almost_equal(resid1, resid2)


# Test both complex and real arithmetic
# for block_jacobi and block_gauss_seidel
class TestBlockRelaxation(TestCase):

    def test_block_jacobi(self):
        np.random.seed(0)

        # All real valued tests
        cases = []
        A = csr_matrix(np.zeros((1, 1)))
        cases.append((A, 1))
        A = csr_matrix(np.random.rand(1, 1))
        cases.append((A, 1))
        A = csr_matrix(np.zeros((2, 2)))
        cases.append((A, 1))
        cases.append((A, 2))
        A = csr_matrix(np.random.rand(2, 2))
        cases.append((A, 1))
        cases.append((A, 2))
        A = csr_matrix(np.zeros((3, 3)))
        cases.append((A, 1))
        cases.append((A, 3))
        A = csr_matrix(np.random.rand(3, 3))
        cases.append((A, 1))
        cases.append((A, 3))
        A = poisson((4, 4), format='csr')
        cases.append((A, 1))
        cases.append((A, 2))
        cases.append((A, 4))
        A = np.array([[9.1, 9.8, 9.6, 0., 3.6, 0.],
                      [18.2, 19.6, 0., 0., 1.7, 2.8],
                      [0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 4.2, 1., 1.1],
                      [0., 0., 9.1, 0., 0., 9.3]])
        A = csr_matrix(A)
        cases.append((A, 1))
        cases.append((A, 2))
        cases.append((A, 3))

        # reference implementation of 1 iteration
        def gold(A, x, b, blocksize, omega):

            A = csr_matrix(A)
            temp = x.copy()
            Dinv = get_block_diag(A, blocksize=blocksize, inv_flag=True)
            D = get_block_diag(A, blocksize=blocksize, inv_flag=False)
            I0 = np.arange(Dinv.shape[0])
            I1 = np.arange(Dinv.shape[0] + 1)
            A_no_D = A - bsr_matrix((D, I0, I1), shape=A.shape)
            A_no_D = csr_matrix(A_no_D)

            for i in range(0, A.shape[0], blocksize):
                r = A_no_D[i:(i+blocksize), :] * temp
                B = (np.ravel(b[i:(i+blocksize)]) - np.ravel(r)).reshape(-1, 1)
                r = Dinv[int(i/blocksize), :, :].dot(B)
                x[i:(i+blocksize)] = (1.0 - omega)*temp[i:(i+blocksize)] + omega*np.ravel(r)

            return x

        for A, blocksize in cases:
            b = np.random.rand(A.shape[0])
            x = np.random.rand(A.shape[0])
            x_copy = x.copy()
            block_jacobi(A, x, b, blocksize=blocksize, iterations=1, omega=1.1)
            assert_almost_equal(x, gold(A, x_copy, b, blocksize, 1.1),
                                decimal=4)

        # check for agreement between jacobi and block jacobi with blocksize=1
        A = poisson((4, 5), format='csr')
        b = np.random.rand(A.shape[0])
        x = np.random.rand(A.shape[0])
        x_copy = x.copy()
        block_jacobi(A, x, b, blocksize=1, iterations=2, omega=1.1)
        jacobi(A, x_copy, b, iterations=2, omega=1.1)
        assert_almost_equal(x, x_copy, decimal=4)

        # complex valued tests
        cases = []
        A = csr_matrix(np.random.rand(3, 3) + 1.0j*np.random.rand(3, 3))
        cases.append((A, 1))
        cases.append((A, 3))
        A = poisson((4, 4), format='csr')
        A.data = A.data + 1.0j*np.random.rand(A.data.shape[0])
        cases.append((A, 1))
        cases.append((A, 2))
        cases.append((A, 4))
        A = np.array([[9.1j, 9.8j, 9.6, 0., 3.6, 0.],
                      [18.2j, 19.6j, 0., 0., 1.7, 2.8],
                      [0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 4.2, 1.0j, 1.1],
                      [0., 0., 9.1, 0., 0., 9.3]])
        A = csr_matrix(A)
        cases.append((A, 1))
        cases.append((A, 2))
        cases.append((A, 3))

        for A, blocksize in cases:
            b = np.random.rand(A.shape[0]) + 1.0j*np.random.rand(A.shape[0])
            x = np.random.rand(A.shape[0]) + 1.0j*np.random.rand(A.shape[0])
            x_copy = x.copy()
            block_jacobi(A, x, b, blocksize=blocksize, iterations=1, omega=1.1)
            assert_almost_equal(x, gold(A, x_copy, b, blocksize, 1.1),
                                decimal=4)

    def test_block_gauss_seidel(self):
        np.random.seed(0)

        # All real valued tests
        cases = []
        A = csr_matrix(np.zeros((1, 1)))
        cases.append((A, 1))
        A = csr_matrix(np.random.rand(1, 1))
        cases.append((A, 1))
        A = csr_matrix(np.zeros((2, 2)))
        cases.append((A, 1))
        cases.append((A, 2))
        A = csr_matrix(np.random.rand(2, 2))
        cases.append((A, 1))
        cases.append((A, 2))
        A = csr_matrix(np.zeros((3, 3)))
        cases.append((A, 1))
        cases.append((A, 3))
        A = csr_matrix(np.random.rand(3, 3))
        cases.append((A, 1))
        cases.append((A, 3))
        A = poisson((4, 4), format='csr')
        cases.append((A, 1))
        cases.append((A, 2))
        cases.append((A, 4))
        A = np.array([[9.1, 9.8, 9.6, 0., 3.6, 0.],
                      [18.2, 19.6, 0., 0., 1.7, 2.8],
                      [0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 4.2, 1., 1.1],
                      [0., 0., 9.1, 0., 0., 9.3]])
        A = csr_matrix(A)
        cases.append((A, 1))
        cases.append((A, 2))
        cases.append((A, 3))

        # reference implementation of 1 iteration
        def gold(A, x, b, blocksize, sweep):

            A = csr_matrix(A)
            Dinv = get_block_diag(A, blocksize=blocksize, inv_flag=True)
            D = get_block_diag(A, blocksize=blocksize, inv_flag=False)
            I0 = np.arange(Dinv.shape[0])
            I1 = np.arange(Dinv.shape[0] + 1)
            A_no_D = A - bsr_matrix((D, I0, I1), shape=A.shape)
            A_no_D = csr_matrix(A_no_D)

            if sweep == 'symmetric':
                x = gold(A, x, b, blocksize, 'forward')
                x = gold(A, x, b, blocksize, 'backward')
                return x
            elif sweep == 'forward':
                start, stop, step = (0, A.shape[0], blocksize)
            elif sweep == 'backward':
                start, stop, step =\
                    (A.shape[0] - blocksize, -blocksize, -blocksize)

            for i in range(start, stop, step):
                r = A_no_D[i:(i+blocksize), :]*x
                B = (np.ravel(b[i:(i+blocksize)]) - np.ravel(r)).reshape(-1, 1)
                r = Dinv[int(i/blocksize), :, :].dot(B)
                x[i:(i+blocksize)] = np.ravel(r)

            return x

        for A, blocksize in cases:
            b = np.random.rand(A.shape[0])
            # forward
            x = np.random.rand(A.shape[0])
            x_copy = x.copy()
            block_gauss_seidel(A, x, b, iterations=1, sweep='forward',
                               blocksize=blocksize)
            assert_almost_equal(x, gold(A, x_copy, b, blocksize, 'forward'),
                                decimal=4)
            # backward
            x = np.random.rand(A.shape[0])
            x_copy = x.copy()
            block_gauss_seidel(A, x, b, iterations=1, sweep='backward',
                               blocksize=blocksize)
            assert_almost_equal(x, gold(A, x_copy, b, blocksize, 'backward'),
                                decimal=4)
            # symmetric
            x = np.random.rand(A.shape[0])
            x_copy = x.copy()
            block_gauss_seidel(A, x, b, iterations=1, sweep='symmetric',
                               blocksize=blocksize)
            assert_almost_equal(x, gold(A, x_copy, b, blocksize, 'symmetric'),
                                decimal=4)

        # check for agreement between gauss_seidel and block gauss-seidel
        # with blocksize=1
        A = poisson((4, 5), format='csr')
        b = np.random.rand(A.shape[0])
        # forward
        x = np.random.rand(A.shape[0])
        x_copy = x.copy()
        block_gauss_seidel(A, x, b, iterations=2, sweep='forward',
                           blocksize=1)
        gauss_seidel(A, x_copy, b, iterations=2, sweep='forward')
        assert_almost_equal(x, x_copy, decimal=4)
        # backward
        x = np.random.rand(A.shape[0])
        x_copy = x.copy()
        block_gauss_seidel(A, x, b, iterations=2, sweep='backward',
                           blocksize=1)
        gauss_seidel(A, x_copy, b, iterations=2, sweep='backward')
        assert_almost_equal(x, x_copy, decimal=4)
        # symmetric
        x = np.random.rand(A.shape[0])
        x_copy = x.copy()
        block_gauss_seidel(A, x, b, iterations=2, sweep='symmetric',
                           blocksize=1)
        gauss_seidel(A, x_copy, b, iterations=2, sweep='symmetric')
        assert_almost_equal(x, x_copy, decimal=4)

        # complex valued tests
        cases = []
        A = csr_matrix(np.random.rand(3, 3) + 1.0j*np.random.rand(3, 3))
        cases.append((A, 1))
        cases.append((A, 3))
        A = poisson((4, 4), format='csr')
        A.data = A.data + 1.0j*np.random.rand(A.data.shape[0])
        cases.append((A, 1))
        cases.append((A, 2))
        cases.append((A, 4))
        A = np.array([[9.1j, 9.8j, 9.6, 0., 3.6, 0.],
                      [18.2j, 19.6j, 0., 0., 1.7, 2.8],
                      [0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 0., 0., 0.],
                      [0., 0., 0., 4.2, 1.0j, 1.1],
                      [0., 0., 9.1, 0., 0., 9.3]])
        A = csr_matrix(A)
        cases.append((A, 1))
        cases.append((A, 2))
        cases.append((A, 3))

        for A, blocksize in cases:
            b = np.random.rand(A.shape[0]) + 1.0j*np.random.rand(A.shape[0])
            # forward
            x = np.random.rand(A.shape[0]) + 1.0j*np.random.rand(A.shape[0])
            x_copy = x.copy()
            block_gauss_seidel(A, x, b, iterations=1, sweep='forward',
                               blocksize=blocksize)
            assert_almost_equal(x, gold(A, x_copy, b, blocksize, 'forward'),
                                decimal=4)
            # backward
            x = np.random.rand(A.shape[0]) + 1.0j*np.random.rand(A.shape[0])
            x_copy = x.copy()
            block_gauss_seidel(A, x, b, iterations=1, sweep='backward',
                               blocksize=blocksize)
            assert_almost_equal(x, gold(A, x_copy, b, blocksize, 'backward'),
                                decimal=4)
            # symmetric
            x = np.random.rand(A.shape[0]) + 1.0j*np.random.rand(A.shape[0])
            x_copy = x.copy()
            block_gauss_seidel(A, x, b, iterations=1, sweep='symmetric',
                               blocksize=blocksize)
            assert_almost_equal(x, gold(A, x_copy, b, blocksize, 'symmetric'),
                                decimal=4)


class TestJacobiIndexed(TestCase):
    """Test indexed Jacobi routines against other routines."""

    def test_compare_jacobi_indexed_to_jacobi(self):
        A = poisson((8, 8), format='csr')
        n = A.shape[0]
        np.random.seed(336671267)
        x0 = np.random.rand(n)
        b = np.random.rand(n)

        # test all indices
        x_j = x0.copy()
        x_ji = x0.copy()
        indices = np.arange(n)
        jacobi(A, x_j, b, omega=0.3)
        jacobi_indexed(A, x_ji, b, indices, omega=0.3)
        assert_almost_equal(x_j, x_ji)

        # test last 5 indices
        x_j = x0.copy()
        x_ji = x0.copy()
        indices = np.arange(n-5, n)
        jacobi(A, x_j, b, omega=0.3)
        jacobi_indexed(A, x_ji, b, indices, omega=0.3)
        assert_almost_equal(x_j[-5:], x_ji[-5:])

        # test complex
        np.random.seed(635353774)
        A = A.astype(np.complex128)
        b = b.astype(np.complex128)
        x0 = np.random.rand(n)
        x_j = x0.copy().astype(np.complex128)
        x_ji = x0.copy().astype(np.complex128)

        A.data[:] += 0.1 * np.random.randn(len(A.data))
        A.data[:] += 0.1 * 1j * np.random.randn(len(A.data))
        indices = np.arange(n)
        jacobi(A, x_j, b, omega=0.3)
        jacobi_indexed(A, x_ji, b, indices, omega=0.3)
        assert_almost_equal(x_j, x_ji)

        # test blocks
        A = poisson((8, )).tobsr(blocksize=(2, 2))
        n = A.shape[0]
        np.random.seed(25371657)
        x0 = np.random.rand(n)
        b = np.random.rand(n)
        x_j = x0.copy()
        x_ji = x0.copy()
        indices = np.arange(4, dtype=np.int32)
        jacobi(A, x_j, b)
        jacobi_indexed(A, x_ji, b, indices)
        assert_almost_equal(x_j, x_ji)

    def test_compare_cf_fc_jacobi(self):
        """Compare CF/FC relaxation to indexed."""
        A = poisson((10, 10), format='csr')
        splitting = RS(A)
        f_pts = np.where(splitting == 0)[0]
        c_pts = np.where(splitting == 1)[0]

        np.random.seed(1479923306)
        n = A.shape[0]
        x0 = np.random.rand(n)
        b = np.random.rand(n)
        x_cf = x0.copy()
        x_fc = x0.copy()
        x_ji = x0.copy()

        # first check F-points zeroed
        x_cf[f_pts] = 0
        x_fc[f_pts] = 0
        x_ji[f_pts] = 0
        jacobi_indexed(A, x_ji, b, c_pts, omega=0.7)
        cf_jacobi(A, x_cf, b, c_pts, f_pts, omega=0.7)
        assert_almost_equal(x_ji[c_pts], x_cf[c_pts])

        # then check C-points zeroed
        x_cf[c_pts] = 0
        x_fc[c_pts] = 0
        x_ji[c_pts] = 0
        jacobi_indexed(A, x_ji, b, f_pts, omega=0.7)
        fc_jacobi(A, x_fc, b, c_pts, f_pts, omega=0.7)
        assert_almost_equal(x_ji[f_pts], x_fc[f_pts])

    def test_compare_bsr_cf_fc_jacobi(self):
        """Compare CF/FC relaxation to indexed in bsr."""
        A = poisson((10,)).tobsr(blocksize=(2, 2))

        splitting = np.array([1, 0, 1, 0, 1], dtype=np.int32)
        f_pts = np.where(splitting == 0)[0]
        c_pts = np.where(splitting == 1)[0]

        np.random.seed(1479923306)
        n = A.shape[0]
        x0 = np.random.rand(n)
        b = np.random.rand(n)
        bs = A.blocksize[0]

        # first check F-points zeroed
        x = x0.copy()
        x_ji = x0.copy()
        for i in range(bs):
            x[f_pts*bs+i] = 0
            x_ji[f_pts*bs+i] = 0
        jacobi_indexed(A, x_ji, b, c_pts, omega=0.7)
        cf_jacobi(A, x, b, c_pts, f_pts, omega=0.7)
        for i in range(A.blocksize[0]):
            assert_almost_equal(x_ji[c_pts*bs+i], x[c_pts*bs+i])

        # then check C-points zeroed
        x = x0.copy()
        x_ji = x0.copy()
        for i in range(bs):
            x[c_pts*bs+i] = 0
            x_ji[c_pts*bs+i] = 0
        jacobi_indexed(A, x_ji, b, f_pts, omega=0.7)
        fc_jacobi(A, x, b, c_pts, f_pts, omega=0.7)
        for i in range(A.blocksize[0]):
            assert_almost_equal(x_ji[f_pts*bs+i], x[f_pts*bs+i])

    def test_compare_block_cf_fc_jacobi(self):
        """Compare CF/FC relaxation to block Jacobi."""
        A = poisson((10,)).tobsr(blocksize=(2, 2))

        splitting = np.array([1, 0, 1, 0, 1], dtype=np.int32)
        f_pts = np.where(splitting == 0)[0]
        c_pts = np.where(splitting == 1)[0]

        np.random.seed(1479923306)
        n = A.shape[0]
        x0 = np.random.rand(n)
        b = np.random.rand(n)
        bs = A.blocksize[0]

        # first check F-points zeroed
        x = x0.copy()
        x_j = x0.copy()
        for i in range(bs):
            x[f_pts*bs+i] = 0
            x_j[f_pts*bs+i] = 0
        block_jacobi(A, x_j, b, blocksize=2, omega=0.7)
        cf_block_jacobi(A, x, b, c_pts, f_pts, blocksize=2, omega=0.7)
        for i in range(A.blocksize[0]):
            assert_almost_equal(x_j[c_pts*bs+i], x[c_pts*bs+i])

        # then check C-points zeroed
        x = x0.copy()
        x_j = x0.copy()
        for i in range(bs):
            x[c_pts*bs+i] = 0
            x_j[c_pts*bs+i] = 0
        block_jacobi(A, x_j, b, blocksize=2, omega=0.7)
        fc_block_jacobi(A, x, b, c_pts, f_pts, blocksize=2, omega=0.7)
        for i in range(A.blocksize[0]):
            assert_almost_equal(x_j[f_pts*bs+i], x[f_pts*bs+i])

    def test_integrated_cf_fc_relaxation(self):
        """Test CF/FC relaxation within a hierarchy."""
        A = poisson((10, 10), format='csr')
        opts = {'omega': 4.0/3.0, 'iterations': 2}
        ml = ruge_stuben_solver(A,
                                presmoother=('fc_jacobi', opts),
                                postsmoother=('fc_jacobi', opts))
        assert not ml.symmetric_smoothing

        ml = ruge_stuben_solver(A,
                                presmoother=('cf_jacobi', opts),
                                postsmoother=('fc_jacobi', opts))
        assert ml.symmetric_smoothing

        np.random.seed(1825622348)
        x0 = np.random.rand(A.shape[0])
        b = np.random.rand(A.shape[0])
        tol = 1e-5
        x, info = ml.solve(b, x0=x0, tol=tol, maxiter=100, return_info=True)
        assert (np.linalg.norm(b - A @ x)/np.linalg.norm(b - A @ x0)) < tol
        assert info == 0
