
    _Mh=/                     r    d Z ddlZddlmZmZmZmZ ddlm	Z	 g dZ
 G d de          Zd	ej        d
fdZdS )zD
Convenience interface to N-D interpolation

.. versionadded:: 0.9

    N   )LinearNDInterpolatorNDInterpolatorBaseCloughTocher2DInterpolator_ndim_coords_from_arrays)cKDTree)griddataNearestNDInterpolatorr   r   c                        e Zd ZdZddZd ZdS )r
   aL  NearestNDInterpolator(x, y).

    Nearest-neighbor interpolator in N > 1 dimensions.

    .. versionadded:: 0.9

    Methods
    -------
    __call__

    Parameters
    ----------
    x : (npoints, ndims) 2-D ndarray of floats
        Data point coordinates.
    y : (npoints, ) 1-D ndarray of float or complex
        Data values.
    rescale : boolean, optional
        Rescale points to unit cube before performing interpolation.
        This is useful if some of the input dimensions have
        incommensurable units and differ by many orders of magnitude.

        .. versionadded:: 0.14.0
    tree_options : dict, optional
        Options passed to the underlying ``cKDTree``.

        .. versionadded:: 0.17.0

    See Also
    --------
    griddata :
        Interpolate unstructured D-D data.
    LinearNDInterpolator :
        Piecewise linear interpolator in N dimensions.
    CloughTocher2DInterpolator :
        Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D.
    interpn : Interpolation on a regular grid or rectilinear grid.
    RegularGridInterpolator : Interpolator on a regular or rectilinear grid
                              in arbitrary dimensions (`interpn` wraps this
                              class).

    Notes
    -----
    Uses ``scipy.spatial.cKDTree``

    .. note:: For data on a regular grid use `interpn` instead.

    Examples
    --------
    We can interpolate values on a 2D plane:

    >>> from scipy.interpolate import NearestNDInterpolator
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()
    >>> x = rng.random(10) - 0.5
    >>> y = rng.random(10) - 0.5
    >>> z = np.hypot(x, y)
    >>> X = np.linspace(min(x), max(x))
    >>> Y = np.linspace(min(y), max(y))
    >>> X, Y = np.meshgrid(X, Y)  # 2D grid for interpolation
    >>> interp = NearestNDInterpolator(list(zip(x, y)), z)
    >>> Z = interp(X, Y)
    >>> plt.pcolormesh(X, Y, Z, shading='auto')
    >>> plt.plot(x, y, "ok", label="input point")
    >>> plt.legend()
    >>> plt.colorbar()
    >>> plt.axis("equal")
    >>> plt.show()

    FNc                     t          j        | |||dd           |t                      }t          | j        fi || _        t          j        |          | _        d S )NF)rescaleneed_contiguousneed_values)	r   __init__dictr   pointstreenpasarrayvalues)selfxyr   tree_optionss        ]/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/interpolate/_ndgriddata.pyr   zNearestNDInterpolator.__init__\   sg    #D!Q4905	7 	7 	7 	7 66LDK88<88	jmm    c                 x   t          || j        j        d                   }|                     |          }|                     |          }|                    d|j        d                   }|j        }|j        } | j        j        |fi |\  }}t          j	        |          }	| j
        j        dk    r |dd         | j
        j        dd         z   }
n
|dd         }
t          j        | j
        j        t          j                  r,t          j        |
t          j        | j
        j                  }nt          j        |
t          j                  }| j
        ||	         df         ||	<   | j
        j        dk    r |dd         | j
        j        dd         z   }n
|dd         }|                    |          }|S )a  
        Evaluate interpolator at given points.

        Parameters
        ----------
        x1, x2, ... xn : array-like of float
            Points where to interpolate data at.
            x1, x2, ... xn can be array-like of float with broadcastable shape.
            or x1 can be array-like of float with shape ``(..., ndim)``
        **query_options
            This allows ``eps``, ``p``, ``distance_upper_bound``, and ``workers``
            being passed to the cKDTree's query function to be explicitly set.
            See `scipy.spatial.cKDTree.query` for an overview of the different options.

            .. versionadded:: 1.12.0

        r   )ndimN)dtype.)r   r   shape_check_call_shape_scale_xreshaper   queryr   isfiniter   r   
issubdtyper    complexfloatingfullnan)r   argsquery_optionsxixi_flatoriginal_shapeflattened_shapedisti
valid_maskinterp_shapeinterp_values	new_shapes                r   __call__zNearestNDInterpolator.__call__e   s   * &d1B11EFFF##B'']]2 **R"..!- "$)/';;];;a[&&
 ;a*3B3/$+2CABB2GGLL*3B3/L=*B,>?? 	:GL"&@QRRRMMGL"&99M$(K*s0B$Cj!;a&ss+dk.?.CCII&ss+I%--i88r   )FN)__name__
__module____qualname____doc__r   r7    r   r   r
   r
      sI        E EN$ $ $ $A A A A Ar   r
   linearFc                    t          |           } | j        dk     r| j        }n| j        d         }|dk    r|dv rddlm} |                                 } t          |t                    r&t          |          dk    rt          d          |\  }t          j        |           }| |         } ||         }|dk    rd} || ||d	d
|          }	 |	|          S |dk    rt          | ||          }	 |	|          S |dk    rt          | |||          }	 |	|          S |dk    r$|dk    rt          | |||          }	 |	|          S t          d||fz            )aX  
    Interpolate unstructured D-D data.

    Parameters
    ----------
    points : 2-D ndarray of floats with shape (n, D), or length D tuple of 1-D ndarrays with shape (n,).
        Data point coordinates.
    values : ndarray of float or complex, shape (n,)
        Data values.
    xi : 2-D ndarray of floats with shape (m, D), or length D tuple of ndarrays broadcastable to the same shape.
        Points at which to interpolate data.
    method : {'linear', 'nearest', 'cubic'}, optional
        Method of interpolation. One of

        ``nearest``
          return the value at the data point closest to
          the point of interpolation. See `NearestNDInterpolator` for
          more details.

        ``linear``
          tessellate the input point set to N-D
          simplices, and interpolate linearly on each simplex. See
          `LinearNDInterpolator` for more details.

        ``cubic`` (1-D)
          return the value determined from a cubic
          spline.

        ``cubic`` (2-D)
          return the value determined from a
          piecewise cubic, continuously differentiable (C1), and
          approximately curvature-minimizing polynomial surface. See
          `CloughTocher2DInterpolator` for more details.
    fill_value : float, optional
        Value used to fill in for requested points outside of the
        convex hull of the input points. If not provided, then the
        default is ``nan``. This option has no effect for the
        'nearest' method.
    rescale : bool, optional
        Rescale points to unit cube before performing interpolation.
        This is useful if some of the input dimensions have
        incommensurable units and differ by many orders of magnitude.

        .. versionadded:: 0.14.0

    Returns
    -------
    ndarray
        Array of interpolated values.

    See Also
    --------
    LinearNDInterpolator :
        Piecewise linear interpolator in N dimensions.
    NearestNDInterpolator :
        Nearest-neighbor interpolator in N dimensions.
    CloughTocher2DInterpolator :
        Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D.
    interpn : Interpolation on a regular grid or rectilinear grid.
    RegularGridInterpolator : Interpolator on a regular or rectilinear grid
                              in arbitrary dimensions (`interpn` wraps this
                              class).

    Notes
    -----

    .. versionadded:: 0.9

    .. note:: For data on a regular grid use `interpn` instead.

    Examples
    --------

    Suppose we want to interpolate the 2-D function

    >>> import numpy as np
    >>> def func(x, y):
    ...     return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

    on a grid in [0, 1]x[0, 1]

    >>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]

    but we only know its values at 1000 data points:

    >>> rng = np.random.default_rng()
    >>> points = rng.random((1000, 2))
    >>> values = func(points[:,0], points[:,1])

    This can be done with `griddata` -- below we try out all of the
    interpolation methods:

    >>> from scipy.interpolate import griddata
    >>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
    >>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
    >>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

    One can see that the exact result is reproduced by all of the
    methods to some degree, but for this smooth function the piecewise
    cubic interpolant gives the best results:

    >>> import matplotlib.pyplot as plt
    >>> plt.subplot(221)
    >>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
    >>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
    >>> plt.title('Original')
    >>> plt.subplot(222)
    >>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Nearest')
    >>> plt.subplot(223)
    >>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Linear')
    >>> plt.subplot(224)
    >>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
    >>> plt.title('Cubic')
    >>> plt.gcf().set_size_inches(6, 6)
    >>> plt.show()

       r   r   )nearestr=   cubic)interp1dz"invalid number of dimensions in xir@   extrapolater   F)kindaxisbounds_error
fill_value)r   r=   )rG   r   rA   z7Unknown interpolation method %r for %d dimensional data)r   r   r!   _interpolaterB   ravel
isinstancetuplelen
ValueErrorr   argsortr
   r   r   )
r   r   r-   methodrG   r   r   rB   idxips
             r   r	   r	      s   t &f--F{Q{|BqyyV===******b%   	2ww!|| !EFFFCBj  Y&JXff6!+- - -r"vv	9		"667CCCr"vv	8		!&&Z*13 3 3r"vv	7		tqyy':079 9 9r"vv /28$@ A A 	Ar   )r;   numpyr   	_interpndr   r   r   r   scipy.spatialr   __all__r
   r*   r	   r<   r   r   <module>rV      s        ; ; ; ; ; ; ; ; ; ; ; ; ! ! ! ! ! !) ) )R R R R R. R R Rt )1RV^A ^A ^A ^A ^A ^Ar   