
    ^MhYb                        d dl Z d dlmZ d dlZd dlmZmZmZmZm	Z	m
Z
mZmZmZmZmZmZ d dlmZmZ ddlmZ ddlmZmZ ddlmZ dd	lmZmZ dd
lmZm Z  ddl!m"Z" ddl#m$Z$m%Z% ddl&m'Z' g dZ( ej)        d          j*        Z* ej)        d          j*        Z+ddd dd ddZ,d Z-d"dZ.d Z/d#dZ0d Z1d Z2d Z3d Z4d Z5d Z6d Z7d Z8d#dZ9d#d Z:d! Z;dS )$    N)product)dotdiagprodlogical_notravel	transpose	conjugateabsoluteamaxsignisfinitetriu)LinAlgError	bandwidth   )norm)solveinv)svd)schurrsf2csf)expm_frechet	expm_cond)sqrtm)pick_pade_structurepade_UV_calc)_funm_loops)expmcosmsinmtanmcoshmsinhmtanhmlogmfunmsignmr   fractional_matrix_powerr   r   
khatri_raodf)ilr,   r+   FDc                     t          j        |           } t          | j                  dk    s| j        d         | j        d         k    rt	          d          | S )a  
    Wraps asarray with the extra requirement that the input be a square matrix.

    The motivation is that the matfuncs module has real functions that have
    been lifted to square matrix functions.

    Parameters
    ----------
    A : array_like
        A square matrix.

    Returns
    -------
    out : ndarray
        An ndarray copy or view or other representation of A.

       r   r   z expected square array_like input)npasarraylenshape
ValueErrorAs    V/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/linalg/_matfuncs.py_asarray_squarer;   $   sN    $ 	
1A
17||qAGAJ!'!*44;<<<H    c                     t          j        |           rit          j        |          rU|0t          dz  t          dz  dt
          |j        j                          }t          j        |j	        d|          r|j
        }|S )a(  
    Return either B or the real part of B, depending on properties of A and B.

    The motivation is that B has been computed as a complicated function of A,
    and B may be perturbed by negligible imaginary components.
    If A is real and B is complex with small imaginary components,
    then return a real copy of B.  The assumption in that case would be that
    the imaginary components of B are numerical artifacts.

    Parameters
    ----------
    A : ndarray
        Input array whose type is to be checked as real vs. complex.
    B : ndarray
        Array to be returned, possibly without its imaginary part.
    tol : float
        Absolute tolerance.

    Returns
    -------
    out : real or complex array
        Either the input array B or only the real part of the input array B.

    N     @@g    .Ar   r           )atol)r3   	isrealobjiscomplexobjfepseps_array_precisiondtypecharallcloseimagreal)r9   Btols      r:   _maybe_realrN   <   su    4 
|A 2?1-- ;3h3s7++,<QW\,JKC;qvs--- 	AHr<   c                 h    t          |           } ddl}|j        j                            | |          S )a  
    Compute the fractional power of a matrix.

    Proceeds according to the discussion in section (6) of [1]_.

    Parameters
    ----------
    A : (N, N) array_like
        Matrix whose fractional power to evaluate.
    t : float
        Fractional power.

    Returns
    -------
    X : (N, N) array_like
        The fractional power of the matrix.

    References
    ----------
    .. [1] Nicholas J. Higham and Lijing lin (2011)
           "A Schur-Pade Algorithm for Fractional Powers of a Matrix."
           SIAM Journal on Matrix Analysis and Applications,
           32 (3). pp. 1056-1078. ISSN 0895-4798

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import fractional_matrix_power
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> b = fractional_matrix_power(a, 0.5)
    >>> b
    array([[ 0.75592895,  1.13389342],
           [ 0.37796447,  1.88982237]])
    >>> np.dot(b, b)      # Verify square root
    array([[ 1.,  3.],
           [ 1.,  4.]])

    r   N)r;   scipy.linalg._matfuncs_inv_ssqlinalg_matfuncs_inv_ssq_fractional_matrix_power)r9   tscipys      r:   r)   r)   b   s9    R 	A))))<)BB1aHHHr<   Tc                 &   t          j        |           } ddl}|j        j                            |           }t          | |          }dt          z  }t          j        dd          5  t          t          |          | z
  d          t          j        t          | d          | j                  j        d         z  }ddd           n# 1 swxY w Y   |r8t          |          r||k    r!d	| }t          j        |t           d
           |S ||fS )a  
    Compute matrix logarithm.

    The matrix logarithm is the inverse of
    expm: expm(logm(`A`)) == `A`

    Parameters
    ----------
    A : (N, N) array_like
        Matrix whose logarithm to evaluate
    disp : bool, optional
        Emit warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    logm : (N, N) ndarray
        Matrix logarithm of `A`
    errest : float
        (if disp == False)

        1-norm of the estimated error, ||err||_1 / ||A||_1

    References
    ----------
    .. [1] Awad H. Al-Mohy and Nicholas J. Higham (2012)
           "Improved Inverse Scaling and Squaring Algorithms
           for the Matrix Logarithm."
           SIAM Journal on Scientific Computing, 34 (4). C152-C169.
           ISSN 1095-7197

    .. [2] Nicholas J. Higham (2008)
           "Functions of Matrices: Theory and Computation"
           ISBN 978-0-898716-46-7

    .. [3] Nicholas J. Higham and Lijing lin (2011)
           "A Schur-Pade Algorithm for Fractional Powers of a Matrix."
           SIAM Journal on Matrix Analysis and Applications,
           32 (3). pp. 1056-1078. ISSN 0895-4798

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import logm, expm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> b = logm(a)
    >>> b
    array([[-1.02571087,  2.05142174],
           [ 0.68380725,  1.02571087]])
    >>> expm(b)         # Verify expm(logm(a)) returns a
    array([[ 1.,  3.],
           [ 1.,  4.]])

    r   N  ignore)divideinvalidr   rG    z1logm result may be inaccurate, approximate err = r2   )
stacklevel)r3   r4   rP   rQ   rR   _logmrN   rE   errstater   r   rG   rK   r   warningswarnRuntimeWarning)r9   disprU   r/   errtolerrestmessages          r:   r&   r&      s_   n 	
1A))))&,,Q//AAqA#XF	Hh	7	7	7 U Ud1ggai##bja17&K&K&K&PQS&TTU U U U U U U U U U U U U U U  	A6V#3#3R&RRGM'>a@@@@&ys   (AC

CCc           
      h	   t          j        |           }|j        dk    rE|j        dk     r:t          j        t          j        |                                          gg          S |j        dk     rt          d          |j        d         |j        d         k    rt          d          t          |j         dk    rCt          t          j        d|j                            j        }t          j        ||          S |j        dd	         d
k    rt          j        |          S t          j        |j        t           j                  s |                    t           j                  }n4|j        t           j        k    r|                    t           j                  }|j        d         }t          j        |j        |j                  }t          j        d||f|j                  }t+          d |j        d	d         D              D ]}||         }t-          |          }t/          |          s<t          j        t          j        t          j        |                              ||<   e||dd	d	d	d	f<   t3          |          \  }	}
|	dk     rt5          d|	 d          t7          ||	          }|dk    r,|dk    rt5          d| d          t9          d| d          |d         }|
dk    rd|d         dk    s|d         dk    r4t          j        |          }t          j        |d|
 z  z            t          j        d|          d	d	<   t          j        ||d         dk    rdnd          }t=          |
dz
  dd          D ]}||z  }t          j        |d| z  z            t          j        d|          d	d	<   t?          |d| z  z            |d| z  z  z  }|d         dk    r'|t          j        d|dd	d	df                   d	d	<   |t          j        d|d	ddd	f                   d	d	<   nt=          |
          D ]}||z  }|d         dk    s|d         dk    r9|d         dk    rt          j         |          nt          j!        |          ||<   |||<   |S )a  Compute the matrix exponential of an array.

    Parameters
    ----------
    A : ndarray
        Input with last two dimensions are square ``(..., n, n)``.

    Returns
    -------
    eA : ndarray
        The resulting matrix exponential with the same shape of ``A``

    Notes
    -----
    Implements the algorithm given in [1], which is essentially a Pade
    approximation with a variable order that is decided based on the array
    data.

    For input with size ``n``, the memory usage is in the worst case in the
    order of ``8*(n**2)``. If the input data is not of single and double
    precision of real and complex dtypes, it is copied to a new array.

    For cases ``n >= 400``, the exact 1-norm computation cost, breaks even with
    1-norm estimation and from that point on the estimation scheme given in
    [2] is used to decide on the approximation order.

    References
    ----------
    .. [1] Awad H. Al-Mohy and Nicholas J. Higham, (2009), "A New Scaling
           and Squaring Algorithm for the Matrix Exponential", SIAM J. Matrix
           Anal. Appl. 31(3):970-989, :doi:`10.1137/09074721X`

    .. [2] Nicholas J. Higham and Francoise Tisseur (2000), "A Block Algorithm
           for Matrix 1-Norm Estimation, with an Application to 1-Norm
           Pseudospectra." SIAM J. Matrix Anal. Appl. 21(4):1185-1201,
           :doi:`10.1137/S0895479899356080`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import expm, sinm, cosm

    Matrix version of the formula exp(0) = 1:

    >>> expm(np.zeros((3, 2, 2)))
    array([[[1., 0.],
            [0., 1.]],
    <BLANKLINE>
           [[1., 0.],
            [0., 1.]],
    <BLANKLINE>
           [[1., 0.],
            [0., 1.]]])

    Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
    applied to a matrix:

    >>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
    >>> expm(1j*a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
    >>> cosm(a) + 1j*sinm(a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

    r   r2   z0The input array must be at least two-dimensionalz-Last 2 dimensions of the array must be squarer   r[   N)r   r      c                 ,    g | ]}t          |          S r\   )range).0xs     r:   
<listcomp>zexpm.<locals>.<listcomp>=  s    888aq888r<   znscipy.linalg.expm could not allocate sufficient memory while trying to compute the Pade structure (error code z).izkscipy.linalg.expm could not allocate sufficient memory while trying to compute the exponential (error code z^scipy.linalg.expm got an internal LAPACK error during the exponential computation (error code )zii->i)kg       @)"r3   r4   sizendimarrayexpitemr   r6   minr   eyerG   
empty_like
issubdtypeinexactastypefloat64float16float32emptyr   r   anyr   r   MemoryErrorr   RuntimeErroreinsumrl   
_exp_sinchr   tril)r9   arG   neAAmindawlumsinfoeAwdiag_awsdr-   exp_sd_s                     r:   r   r      s   F 	
1Av{{qvzzx"&**+,---vzzLMMMwr{agbk!!IJJJ AG}RVAQW---..4}Qe,,,, 	wrss|vvayy="*-- !HHRZ  	
BJ		HHRZ   	
A	!'	)	)	)B	1a)17	+	+	+B 88173B3<8889 > >sVr]]2ww 	gbfRWR[[1122BsG
 1aaa7"2&&1EE =78= = = > > > B""199s{{! #B9=#B #B #B C C C # $:26$: $: $: ; ; ; e661

1

 '"++-/VGa1"g4E-F-F	'3''*WRA!22;;;qsB++ 	E 	EA)C 24"r(8J1K1KBIgs++AAA.'28(<==a1"gNF!uzz>D	'3qrr3B3w<88;;>D	'3ssABBw<88;;	E q $ $A)CC qEQJJBqEQJJ&(eqjjbgclllbgcllBsGGBsGGIr<   c                     t          j        t          j        |                     }t          j        |           }|dk    }|| xx         ||          z  cc<   t          j        | d d         |                   ||<   |S )Nr@   rh   )r3   diffru   )rn   	lexp_diffl_diffmask_zs       r:   r   r     sy    q		""IWQZZFr\Fvg&&/)q"vf~..Ifr<   c                     t          |           } t          j        |           r(dt          d| z            t          d| z            z   z  S t          d| z            j        S )a!  
    Compute the matrix cosine.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array

    Returns
    -------
    cosm : (N, N) ndarray
        Matrix cosine of A

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import expm, sinm, cosm

    Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
    applied to a matrix:

    >>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
    >>> expm(1j*a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
    >>> cosm(a) + 1j*sinm(a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

          ?              ?             )r;   r3   rC   r   rK   r8   s    r:   r    r      sZ    B 	A	q DAJJc!e,--BqDzzr<   c                     t          |           } t          j        |           r(dt          d| z            t          d| z            z
  z  S t          d| z            j        S )a   
    Compute the matrix sine.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array.

    Returns
    -------
    sinm : (N, N) ndarray
        Matrix sine of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import expm, sinm, cosm

    Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
    applied to a matrix:

    >>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
    >>> expm(1j*a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
    >>> cosm(a) + 1j*sinm(a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

    y             r   r   )r;   r3   rC   r   rJ   r8   s    r:   r!   r!     sZ    B 	A	q d2a4jj4A;;.//BqDzzr<   c           	          t          |           } t          | t          t          |           t	          |                               S )a  
    Compute the matrix tangent.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array.

    Returns
    -------
    tanm : (N, N) ndarray
        Matrix tangent of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import tanm, sinm, cosm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> t = tanm(a)
    >>> t
    array([[ -2.00876993,  -8.41880636],
           [ -2.80626879, -10.42757629]])

    Verify tanm(a) = sinm(a).dot(inv(cosm(a)))

    >>> s = sinm(a)
    >>> c = cosm(a)
    >>> s.dot(np.linalg.inv(c))
    array([[ -2.00876993,  -8.41880636],
           [ -2.80626879, -10.42757629]])

    )r;   rN   r   r    r!   r8   s    r:   r"   r"     s8    F 	Aq%Qa11222r<   c                     t          |           } t          | dt          |           t          |            z   z            S )a  
    Compute the hyperbolic matrix cosine.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array.

    Returns
    -------
    coshm : (N, N) ndarray
        Hyperbolic matrix cosine of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import tanhm, sinhm, coshm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> c = coshm(a)
    >>> c
    array([[ 11.24592233,  38.76236492],
           [ 12.92078831,  50.00828725]])

    Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

    >>> t = tanhm(a)
    >>> s = sinhm(a)
    >>> t - s.dot(np.linalg.inv(c))
    array([[  2.72004641e-15,   4.55191440e-15],
           [  0.00000000e+00,  -5.55111512e-16]])

    r   r;   rN   r   r8   s    r:   r#   r#     :    F 	Aq#a488!34555r<   c                     t          |           } t          | dt          |           t          |            z
  z            S )a  
    Compute the hyperbolic matrix sine.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array.

    Returns
    -------
    sinhm : (N, N) ndarray
        Hyperbolic matrix sine of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import tanhm, sinhm, coshm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> s = sinhm(a)
    >>> s
    array([[ 10.57300653,  39.28826594],
           [ 13.09608865,  49.86127247]])

    Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

    >>> t = tanhm(a)
    >>> c = coshm(a)
    >>> t - s.dot(np.linalg.inv(c))
    array([[  2.72004641e-15,   4.55191440e-15],
           [  0.00000000e+00,  -5.55111512e-16]])

    r   r   r8   s    r:   r$   r$   (  r   r<   c           	          t          |           } t          | t          t          |           t	          |                               S )a  
    Compute the hyperbolic matrix tangent.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array

    Returns
    -------
    tanhm : (N, N) ndarray
        Hyperbolic matrix tangent of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import tanhm, sinhm, coshm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> t = tanhm(a)
    >>> t
    array([[ 0.3428582 ,  0.51987926],
           [ 0.17329309,  0.86273746]])

    Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

    >>> s = sinhm(a)
    >>> c = coshm(a)
    >>> t - s.dot(np.linalg.inv(c))
    array([[  2.72004641e-15,   4.55191440e-15],
           [  0.00000000e+00,  -5.55111512e-16]])

    )r;   rN   r   r#   r$   r8   s    r:   r%   r%   O  s8    F 	Aq%a%((33444r<   c                    t          |           } t          |           \  }}t          ||          \  }}|j        \  }}t	           |t	          |                              }|                    |j        j                  }t          |d                   }t          ||||          \  }}t          t          ||          t          t          |                              }t          | |          }t          t          dt           |j        j                          }|dk    r|}t#          dt%          |||z  t'          t)          |d          d          z                      }	t+          t-          t/          t1          |                              d          rt2          j        }	|r|	d|z  k    rt7          d|	           |S ||	fS )	a  
    Evaluate a matrix function specified by a callable.

    Returns the value of matrix-valued function ``f`` at `A`. The
    function ``f`` is an extension of the scalar-valued function `func`
    to matrices.

    Parameters
    ----------
    A : (N, N) array_like
        Matrix at which to evaluate the function
    func : callable
        Callable object that evaluates a scalar function f.
        Must be vectorized (eg. using vectorize).
    disp : bool, optional
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    funm : (N, N) ndarray
        Value of the matrix function specified by func evaluated at `A`
    errest : float
        (if disp == False)

        1-norm of the estimated error, ||err||_1 / ||A||_1

    Notes
    -----
    This function implements the general algorithm based on Schur decomposition
    (Algorithm 9.1.1. in [1]_).

    If the input matrix is known to be diagonalizable, then relying on the
    eigendecomposition is likely to be faster. For example, if your matrix is
    Hermitian, you can do

    >>> from scipy.linalg import eigh
    >>> def funm_herm(a, func, check_finite=False):
    ...     w, v = eigh(a, check_finite=check_finite)
    ...     ## if you further know that your matrix is positive semidefinite,
    ...     ## you can optionally guard against precision errors by doing
    ...     # w = np.maximum(w, 0)
    ...     w = func(w)
    ...     return (v * w).dot(v.conj().T)

    References
    ----------
    .. [1] Gene H. Golub, Charles F. van Loan, Matrix Computations 4th ed.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import funm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> funm(a, lambda x: x*x)
    array([[  4.,  15.],
           [  5.,  19.]])
    >>> a.dot(a)
    array([[  4.,  15.],
           [  5.,  19.]])

    )r   r   r?   r@   r   r   )axisrW   z0funm result may be inaccurate, approximate err =)r;   r   r   r6   r   r|   rG   rH   absr   r   r	   r
   rN   rD   rE   rF   rw   maxr   r   r   r   r   r   r3   infprint)
r9   funcrc   TZr   r/   mindenrM   errs
             r:   r'   r'   v  s   ~ 	A88DAq1a==DAq7DAqTT$q'']]A	A4\\F Aq!V,,IAvC1IIy1..//AAqAs

,QW\:
;C}}
aS3v:tDAJJ':'::;;
<
<CE+hqkk**++!444 f c>>DcJJJ#vr<   c                    t          |           } d }t          | |d          \  }}dt          z  dt          z  dt          |j        j                          }||k     r|S t          | d          }t          j	        |          }d|z  }| |t          j
        | j        d                   z  z   }	|}
t          d	          D ]`}t          |	          }d|	|z   z  }	dt          |	|	          |	z   z  }t          t          ||          |z
  d
          }||k     s|
|k    r n|}
a|r't!          |          r||k    rt#          d|           |	S |	|fS )a'  
    Matrix sign function.

    Extension of the scalar sign(x) to matrices.

    Parameters
    ----------
    A : (N, N) array_like
        Matrix at which to evaluate the sign function
    disp : bool, optional
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    signm : (N, N) ndarray
        Value of the sign function at `A`
    errest : float
        (if disp == False)

        1-norm of the estimated error, ||err||_1 / ||A||_1

    Examples
    --------
    >>> from scipy.linalg import signm, eigvals
    >>> a = [[1,2,3], [1,2,1], [1,1,1]]
    >>> eigvals(a)
    array([ 4.12488542+0.j, -0.76155718+0.j,  0.63667176+0.j])
    >>> eigvals(signm(a))
    array([-1.+0.j,  1.+0.j,  1.+0.j])

    c                     t          j        |           }|j        j        dk    rdt          z  t          |           z  }ndt          z  t          |           z  }t          t          |          |k    |z            S )Nr,   r>   )	r3   rK   rG   rH   rD   r   rE   r   r   )rn   rxcs      r:   rounded_signzsignm.<locals>.rounded_sign  se    WQZZ8=CDa AACQAXb\\A%+,,,r<   r   )rc   r>   r?   F)
compute_uvr   d   r   z1signm result may be inaccurate, approximate err =)r;   r'   rD   rE   rF   rG   rH   r   r3   r   identityr6   rl   r   r   r   r   r   )r9   rc   r   resultre   rd   valsmax_svr   S0prev_errestr-   iS0Pps                 r:   r(   r(     s~   B 	A- - - !\222NFFTc#g&&'78I'JKF qU###DWT]]F 	F
A	
Qr{171:&&&	&BK3ZZ  "gg"s(^#b"++b.!c"bkk"na((F??kV33E  	O6V#3#3EvNNN	6zr<   c                 R   t          j        |           } t          j        |          }| j        dk    r|j        dk    st          d          | j        d         |j        d         k    st          d          | j        dk    s|j        dk    r@| j        d         |j        d         z  }| j        d         }t          j        | ||f          S | dddt           j        ddf         |dt           j        ddddf         z  }|                    d	|j        dd         z             S )
a  
    Khatri-rao product

    A column-wise Kronecker product of two matrices

    Parameters
    ----------
    a : (n, k) array_like
        Input array
    b : (m, k) array_like
        Input array

    Returns
    -------
    c:  (n*m, k) ndarray
        Khatri-rao product of `a` and `b`.

    Notes
    -----
    The mathematical definition of the Khatri-Rao product is:

    .. math::

        (A_{ij}  \bigotimes B_{ij})_{ij}

    which is the Kronecker product of every column of A and B, e.g.::

        c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[1, 2, 3], [4, 5, 6]])
    >>> b = np.array([[3, 4, 5], [6, 7, 8], [2, 3, 9]])
    >>> linalg.khatri_rao(a, b)
    array([[ 3,  8, 15],
           [ 6, 14, 24],
           [ 2,  6, 27],
           [12, 20, 30],
           [24, 35, 48],
           [ 8, 15, 54]])

    r2   z(The both arrays should be 2-dimensional.r   z6The number of columns for both arrays should be equal.r   )r6   .N)rh   )	r3   r4   rs   r7   r6   rr   ry   newaxisreshape)r   br   r   r   s        r:   r*   r*   $  s   Z 	
1A

1AFaKKAFaKKCDDD71:## , - - 	- 	v{{afkkGAJ#GAJ}Qq!f---- 	
#qqq"*aaa
 1S"*aaa%:#;;A99UQWQRR[()))r<   )N)T)<r`   	itertoolsr   numpyr3   r   r   r   r   r   r	   r
   r   r   r   r   r   scipy.linalgr   r   _miscr   _basicr   r   _decomp_svdr   _decomp_schurr   r   _expm_frechetr   r   _matfuncs_sqrtmr   _matfuncs_expmr   r   _linalg_pythranr   __all__finforE   rD   rF   r;   rN   r)   r&   r   r   r    r!   r"   r#   r$   r%   r'   r(   r*   r\   r<   r:   <module>r      s             D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0 / / / / / / /                     ) ) ) ) ) ) ) ) 2 2 2 2 2 2 2 2 " " " " " " = = = = = = = = ( ( ( ( ( (& & & bhsmmrx}}CC   0   L+I +I +I\F F F FRd d dN  % % %P% % %P$3 $3 $3N$6 $6 $6N$6 $6 $6N$5 $5 $5N[ [ [ [|M M M M`?* ?* ?* ?* ?*r<   