
    ^MhB                         d Z ddlZddlZddlmZmZ ddlmZ ddl	m
Z
 ddlmZmZmZmZmZ ddlmZmZmZ d	 Zd
 Zd Z	 	 	 	 	 	 	 	 ddZdS )a^  HiGHS Linear Optimization Methods

Interface to HiGHS linear optimization software.
https://highs.dev/

.. versionadded:: 1.5.0

References
----------
.. [1] Q. Huangfu and J.A.J. Hall. "Parallelizing the dual revised simplex
           method." Mathematical Programming Computation, 10 (1), 119-142,
           2018. DOI: 10.1007/s12532-017-0130-5

    N   )OptimizeWarningOptimizeResult)warn)_highs_wrapper)	kHighsInfHighsDebugLevelObjSenseHighsModelStatussimplex_constants)
csc_matrixvstackissparsec                    i ddt           j        dt           j        dt           j        dt           j        dt           j        dt           j        dt           j        dt           j        dt           j	        dt           j
        dt           j        dt           j        dt           j        dt           j        d	t           j        d
}d}|                    | |          \  }}| t#          |           nd}| d| d| d}||fS )zCConverts HiGHS status number/message to SciPy status number/messageN)   z%HiGHS did not provide a status code. )r    )   r   )r   z&Optimization terminated successfully. )r   zTime limit reached. )r   zIteration limit reached. )r   zThe problem is infeasible. )   zThe problem is unbounded. )r   z(The problem is unbounded or infeasible. )r   z*The HiGHS status code was not recognized. z(HiGHS Status z: ))r   kNotset
kLoadErrorkModelErrorkPresolveErrorkSolveErrorkPostsolveErrorkModelEmptykObjectiveBoundkObjectiveTargetkOptimal
kTimeLimitkIterationLimitkInfeasible
kUnboundedkUnboundedOrInfeasiblegetint)highs_statushighs_messagescipy_statuses_messagesunrecognizedscipy_statusscipy_messagehstats          ]/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/optimize/_linprog_highs.py_highs_to_scipy_status_messager/   "   s   F:F 'F 	#WF 	$g	F
 	'F 	$gF 	('F 	$gF 	('F 	)7F 	!#PF 	#%@F 	(*JF 	$&HF 	#%FF  	/ 2E!F$ EL##L,??  L-!-!9CtE% @ @&+@ @/<@ @ @M&&    c                     t          j        |           }t          j        d          5  t          j        | |                   t          z  | |<   d d d            n# 1 swxY w Y   | S )Nignoreinvalid)npisinferrstatesignr   )xinfss     r.   _replace_infr;   @   s    8A;;D	X	&	&	& - -'!D'""9,$- - - - - - - - - - - - - - -Hs   &AA #A c                 j   	 ||                                           S # t          $ r ||          cY S t          $ ry t          j        t
                    }|j        |         j        }t          d| d|  dt          |
                                           d| d	t          d           ||         cY S w xY w)NzOption z is z, but only values in z are allowed. Using default: .r   
stacklevel)lowerAttributeErrorKeyErrorinspect	signature_linprog_highs
parametersdefaultr   setkeysr   )option
option_strchoicessigdefault_strs        r.   _convert_to_highs_enumrO   H   s    $v||~~&&   v $ $ $//nZ08 z  v  GLLNN##    	, 	, 	, 	, {####$s    B2A?B21B2TFc                 R
   |rd| d}t          |t          d           t          |	dt          j        j        t          j        j        t          j        j        t          j        j        dd          }| \  }}}}}}}}|j	        
                                \  }}t          j        d	
          5  t          j        |           t          j        z  }ddd           n# 1 swxY w Y   |}|}|}t          j        ||f          }t          j        ||f          }t!          |          st!          |          rt#          ||f          }nt          j        ||f          }t%          |          }i d|dt&          j        d|d|dt*          j        d|d|d|d|d|d|d|dt          j        j        d|d|d|
} |                     |           t5          |          }t5          |          }t5          |          }t5          |          }|t          j        |          dk    rt          j        d          }nt          j        |          }t=          ||j        |j         |j!        |||||"                    t          j#                  | 
  
        }!d|!v r[|!d         }"t          j        |"tI          |          d                   }#t          j        |"dtI          |                             }"nd\  }"}#d|!v r|!d         }$t          j        |$dtI          |                             }%t          j        |$tI          |          d                   }&t          j        |!d         dddf                   }'t          j        |!d         dddf                   }(n
d\  }%}&d\  }'}(|!%                    d d          })|!%                    d!d          }*tM          |)|*          \  }+}|!d"         },|,|"|#tO          |"|%d#          tO          |#|&d#          tO          |,dn|,|z
  |(d#          tO          |,dn||,z
  |'d#          |!%                    d$          |+|!d          tP          j)        k    ||!%                    d%d          p|!%                    d&d          |!%                    d'          d(}-t          j*        |,          rW|U|-                    |!%                    d)d          |!%                    d*d+          |!%                    d,d+          d-           |-S ).a  
    Solve the following linear programming problem using one of the HiGHS
    solvers:

    User-facing documentation is in _linprog_doc.py.

    Parameters
    ----------
    lp :  _LPProblem
        A ``scipy.optimize._linprog_util._LPProblem`` ``namedtuple``.
    solver : "ipm" or "simplex" or None
        Which HiGHS solver to use.  If ``None``, "simplex" will be used.

    Options
    -------
    maxiter : int
        The maximum number of iterations to perform in either phase. For
        ``solver='ipm'``, this does not include the number of crossover
        iterations.  Default is the largest possible value for an ``int``
        on the platform.
    disp : bool
        Set to ``True`` if indicators of optimization status are to be printed
        to the console each iteration; default ``False``.
    time_limit : float
        The maximum time in seconds allotted to solve the problem; default is
        the largest possible value for a ``double`` on the platform.
    presolve : bool
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if presolve is
        to be disabled.
    dual_feasibility_tolerance : double
        Dual feasibility tolerance.  Default is 1e-07.
        The minimum of this and ``primal_feasibility_tolerance``
        is used for the feasibility tolerance when ``solver='ipm'``.
    primal_feasibility_tolerance : double
        Primal feasibility tolerance.  Default is 1e-07.
        The minimum of this and ``dual_feasibility_tolerance``
        is used for the feasibility tolerance when ``solver='ipm'``.
    ipm_optimality_tolerance : double
        Optimality tolerance for ``solver='ipm'``.  Default is 1e-08.
        Minimum possible value is 1e-12 and must be smaller than the largest
        possible value for a ``double`` on the platform.
    simplex_dual_edge_weight_strategy : str (default: None)
        Strategy for simplex dual edge weights. The default, ``None``,
        automatically selects one of the following.

        ``'dantzig'`` uses Dantzig's original strategy of choosing the most
        negative reduced cost.

        ``'devex'`` uses the strategy described in [15]_.

        ``steepest`` uses the exact steepest edge strategy as described in
        [16]_.

        ``'steepest-devex'`` begins with the exact steepest edge strategy
        until the computation is too costly or inexact and then switches to
        the devex method.

        Currently, using ``None`` always selects ``'steepest-devex'``, but this
        may change as new options become available.

    mip_max_nodes : int
        The maximum number of nodes allotted to solve the problem; default is
        the largest possible value for a ``HighsInt`` on the platform.
        Ignored if not using the MIP solver.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        ``unknown_options`` is non-empty, a warning is issued listing all
        unused options.

    Returns
    -------
    sol : dict
        A dictionary consisting of the fields:

            x : 1D array
                The values of the decision variables that minimizes the
                objective function while satisfying the constraints.
            fun : float
                The optimal value of the objective function ``c @ x``.
            slack : 1D array
                The (nominally positive) values of the slack,
                ``b_ub - A_ub @ x``.
            con : 1D array
                The (nominally zero) residuals of the equality constraints,
                ``b_eq - A_eq @ x``.
            success : bool
                ``True`` when the algorithm succeeds in finding an optimal
                solution.
            status : int
                An integer representing the exit status of the algorithm.

                ``0`` : Optimization terminated successfully.

                ``1`` : Iteration or time limit reached.

                ``2`` : Problem appears to be infeasible.

                ``3`` : Problem appears to be unbounded.

                ``4`` : The HiGHS solver ran into a problem.

            message : str
                A string descriptor of the exit status of the algorithm.
            nit : int
                The total number of iterations performed.
                For ``solver='simplex'``, this includes iterations in all
                phases. For ``solver='ipm'``, this does not include
                crossover iterations.
            crossover_nit : int
                The number of primal/dual pushes performed during the
                crossover routine for ``solver='ipm'``.  This is ``0``
                for ``solver='simplex'``.
            ineqlin : OptimizeResult
                Solution and sensitivity information corresponding to the
                inequality constraints, `b_ub`. A dictionary consisting of the
                fields:

                residual : np.ndnarray
                    The (nominally positive) values of the slack variables,
                    ``b_ub - A_ub @ x``.  This quantity is also commonly
                    referred to as "slack".

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the right-hand side of the
                    inequality constraints, `b_ub`.

            eqlin : OptimizeResult
                Solution and sensitivity information corresponding to the
                equality constraints, `b_eq`.  A dictionary consisting of the
                fields:

                residual : np.ndarray
                    The (nominally zero) residuals of the equality constraints,
                    ``b_eq - A_eq @ x``.

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the right-hand side of the
                    equality constraints, `b_eq`.

            lower, upper : OptimizeResult
                Solution and sensitivity information corresponding to the
                lower and upper bounds on decision variables, `bounds`.

                residual : np.ndarray
                    The (nominally positive) values of the quantity
                    ``x - lb`` (lower) or ``ub - x`` (upper).

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the lower and upper
                    `bounds`.

            mip_node_count : int
                The number of subproblems or "nodes" solved by the MILP
                solver. Only present when `integrality` is not `None`.

            mip_dual_bound : float
                The MILP solver's final estimate of the lower bound on the
                optimal solution. Only present when `integrality` is not
                `None`.

            mip_gap : float
                The difference between the final objective function value
                and the final dual bound, scaled by the final objective
                function value. Only present when `integrality` is not
                `None`.

    Notes
    -----
    The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
    `marginals`, or partial derivatives of the objective function with respect
    to the right-hand side of each constraint. These partial derivatives are
    also referred to as "Lagrange multipliers", "dual values", and
    "shadow prices". The sign convention of `marginals` is opposite that
    of Lagrange multipliers produced by many nonlinear solvers.

    References
    ----------
    .. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
            Mathematical programming 5.1 (1973): 1-28.
    .. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
            simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
    zUnrecognized options detected: z). These will be passed to HiGHS verbatim.r   r>   !simplex_dual_edge_weight_strategyN)dantzigdevexzsteepest-devexsteepestN)rL   r2   r3   presolvesensesolver
time_limithighs_debug_leveldual_feasibility_toleranceipm_optimality_tolerancelog_to_consolemip_max_nodesoutput_flagprimal_feasibility_tolerancesimplex_strategyipm_iteration_limitsimplex_iteration_limitmip_rel_gapr   slack)NNlambda	marg_bndsr   statusmessager9   )residual	marginalsfunsimplex_nitipm_nitcrossover_nit)r9   rd   conineqlineqlinr@   upperrk   rg   successrh   nitrn   mip_node_countmip_dual_boundg        mip_gap)ru   rv   rw   )+r   r   rO   s_cSimplexEdgeWeightStrategy!kSimplexEdgeWeightStrategyDantzigkSimplexEdgeWeightStrategyDevex kSimplexEdgeWeightStrategyChoose&kSimplexEdgeWeightStrategySteepestEdgeTcopyr5   r7   	ones_likeinfconcatenater   r   r   r
   	kMinimizer	   kHighsDebugLevelNoneSimplexStrategykSimplexStrategyDualupdater;   sumemptyarrayr   indptrindicesdataastypeuint8lenr%   r/   r   r   r   any).lprW   rX   rU   dispmaxiterrZ   r_   r[   rQ   rc   r]   unknown_optionsrh   &simplex_dual_edge_weight_strategy_enumcA_ubb_ubA_eqb_eqboundsx0integralitylbublhs_ubrhs_ublhs_eqrhs_eqlhsrhsAoptionsresrd   ro   lamdamarg_ineqlin
marg_eqlin
marg_upper
marg_lowerr'   r(   rg   r9   sols.                                                 r.   rE   rE   Y   s   J  5=_ = = =Wo!4444 .D)+.P.N.O.U . . .* :<6AtT4vr;X]]__FB	X	&	&	& , ,,t$$$RV+, , , , , , , , , , , , , , ,FFF
.&&)
*
*C
.&&)
*
*C~~ $$ $D$<  ItTl##1AH# 	& 	j	
 	_A 	%&@ 	#$< 	$ 	 	t 	'(D 	,2 	C/D 	w  	"7!" 	{#G& NN?### s

C
s

C	b		B	b		Bbf[11Q66hqkkh{++
AHaicR!3!3BH!=!=wH HC #~~GhuSYYZZ())zD		z*++
s 3Hxjs4yyj 122XeCIIJJ/00
Xc+.q!!!t455
Xc+.q!!!t455

#- j!+
J
 778T**LGGIt,,M4\5BD DOFG 	CA$ (& &   #&$ $   ##$944!b&&$ $   ##$944"q&&$ $   ''%..(m'7'@@''-++Dswwy!/D/DGGO441 C6 
vayy [,

!gg&6::!gg&6<<wwy#..
 
 	 	 	 Js   0#CC#&C#)
NTFNNNNNNN)__doc__rC   numpyr5   	_optimizer   r   warningsr   _highspy._highs_wrapperr   _highspy._corer   r	   r
   r   r   rx   scipy.sparser   r   r   r/   r;   rO   rE    r0   r.   <module>r      s3         6 6 6 6 6 6 6 6       3 3 3 3 3 3              6 5 5 5 5 5 5 5 5 5' ' '<  $ $ $" :>'+.204,059#!%M M M M M Mr0   