
    _Mh                        d Z ddlZddlmZ dgZi ddgddgddgd	dgd
d	gdd
gdg ddd	gddgddgdg ddg ddg dddgdg dddgddgg ddgdgdgdgg dd gg d!g d"d#gd$gg d%d&gg d'd(Zd*d)ZdS )+zTools for MLS generation    N   )_max_len_seq_innermax_len_seq                     )r   r
   r   	   
         )r   r   r      )r   r   r      )r   r   r         )r   r   r         )r   r   r         )      r   r   )         )   r   r   r      )      r   r!   )      r   )r   r   r   r   r   r   r   r   r   r!   r    r#   r"       c                    t          j                    j        dk    rt           j        nt           j        }|| t
          vrrt          j        t          t
                                                              }t          d|
                                 d|                                 d          t          j        t
          |          |          }nt          j        t          j        ||                    ddd         }t          j        |dk               s#t          j        || k              s|j        dk     rt          d	          t          j        |          }d
| z  dz
  }||}n$t          |          }|dk     rt          d          |"t          j        | t           j        d          }n9t          j        |t$          d                              t           j                  }|j        dk    s|j        | k    rt          d          t          j        |dk              rt          d          t          j        |t           j        d          }t/          ||| ||          }||fS )a}
  
    Maximum length sequence (MLS) generator.

    Parameters
    ----------
    nbits : int
        Number of bits to use. Length of the resulting sequence will
        be ``(2**nbits) - 1``. Note that generating long sequences
        (e.g., greater than ``nbits == 16``) can take a long time.
    state : array_like, optional
        If array, must be of length ``nbits``, and will be cast to binary
        (bool) representation. If None, a seed of ones will be used,
        producing a repeatable representation. If ``state`` is all
        zeros, an error is raised as this is invalid. Default: None.
    length : int, optional
        Number of samples to compute. If None, the entire length
        ``(2**nbits) - 1`` is computed.
    taps : array_like, optional
        Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence).
        If None, taps will be automatically selected (for up to
        ``nbits == 32``).

    Returns
    -------
    seq : array
        Resulting MLS sequence of 0's and 1's.
    state : array
        The final state of the shift register.

    Notes
    -----
    The algorithm for MLS generation is generically described in:

        https://en.wikipedia.org/wiki/Maximum_length_sequence

    The default values for taps are specifically taken from the first
    option listed for each value of ``nbits`` in:

        https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm

    .. versionadded:: 0.15.0

    Examples
    --------
    MLS uses binary convention:

    >>> from scipy.signal import max_len_seq
    >>> max_len_seq(4)[0]
    array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)

    MLS has a white spectrum (except for DC):

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from numpy.fft import fft, ifft, fftshift, fftfreq
    >>> seq = max_len_seq(6)[0]*2-1  # +1 and -1
    >>> spec = fft(seq)
    >>> N = len(seq)
    >>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
    >>> plt.margins(0.1, 0.1)
    >>> plt.grid(True)
    >>> plt.show()

    Circular autocorrelation of MLS is an impulse:

    >>> acorrcirc = ifft(spec * np.conj(spec)).real
    >>> plt.figure()
    >>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
    >>> plt.margins(0.1, 0.1)
    >>> plt.grid(True)
    >>> plt.show()

    Linear autocorrelation of MLS is approximately an impulse:

    >>> acorr = np.correlate(seq, seq, 'full')
    >>> plt.figure()
    >>> plt.plot(np.arange(-N+1, N), acorr, '.-')
    >>> plt.margins(0.1, 0.1)
    >>> plt.grid(True)
    >>> plt.show()

    r   Nznbits must be between z and z if taps is Noner   r   zEtaps must be non-empty with values between zero and nbits (inclusive)r   z)length must be greater than or equal to 0c)dtypeorderz'state must be a 1-D array of size nbitszstate must not be all zeros)npintpitemsizeint32int64	_mls_tapsarraylistkeys
ValueErrorminmaxuniqueanysizeintonesint8boolastypendimallemptyr   )nbitsstatelengthtaps
taps_dtype
known_tapsn_maxseqs           Y/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/signal/_max_len_seq.pyr   r      sF   f  WYY/144"(J|	!!$y~~'7'7"8"899J Cjnn6F6F C C * 0 0C C C D D Dx	%(*55y$
3344TTrT:6$( 	;rvdUl33 	;ty1}} : ; ; ;x~~XNE~VA::HIII }RWC888 d#666==bgFFzQ%*--BCCC	veqj 86777
(6
4
4
4CtUE63??E:    )NNN)__doc__numpyr*   r   __all__r/   r    rJ   rI   <module>rO      s         2 2 2 2 2 2/)Q )Q )Q )Q )Q )Q )Q			 ))!) 1#)');;;)8:KKK)) 2$)(*KKK)9;bT) ") (<<bTt"<<<bT|||B4bT{{{<<<) ) )	u u u u u urJ   