
    _Mh                     f    d Z ddlZddlmZ ddlmZ ddlmZ ddlm	Z
 ddlmZmZ dgZd Zd
d	ZdS )zSparse matrix norms.

    N)issparse)svds)convert_pydata_sparse_to_scipy)sqrtabsnormc                 ~    t           j                            |           }t          j                            |          S )N)sp_sputils_todatanplinalgr   )xdatas     Y/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/sparse/linalg/_norm.py_sparse_frobenius_normr      s+    ;q!!D9>>$    c                 	   t          | d          } t          |           st          d          ||dv rt          |           S |                                 } |"t          t          | j                            }nbt          |t
                    sMd}	 t          |          }n"# t          $ r}t          |          |d}~ww xY w||k    rt          |          |f}| j        }t          |          dk    r|\  }}| |cxk    r|k     rn n| |cxk    r|k     sn d|d	| j        }	t          |	          ||z  ||z  k    rt          d
          |dk    rt          | dd          \  }
}}
|d         S |dk    rt          |dk    r5t          |                               |                                          S |t$          j        k    r5t          |                               |                                          S |dk    r5t          |                               |                                          S |t$          j         k    r5t          |                               |                                          S |dv rt          |           S t          d          t          |          dk    r|\  }| |cxk    r|k     sn d|d	| j        }	t          |	          |t$          j        k    r%t          |                               |          }n>|t$          j         k    r%t          |                               |          }n|dk    r| dk                        |          }n|dk    r$t          |                               |          }n|dv rDt+          t          |                               d                              |                    }nu	 |dz    n"# t          $ r}t          d          |d}~ww xY wt%          j        t          |                               |                              |          d|z            }t/          |d          r&|                                                                S t/          |d          r|j                                        S |                                S t          d          )a
  
    Norm of a sparse matrix

    This function is able to return one of seven different matrix norms,
    depending on the value of the ``ord`` parameter.

    Parameters
    ----------
    x : a sparse array
        Input sparse array.
    ord : {non-zero int, inf, -inf, 'fro'}, optional
        Order of the norm (see table under ``Notes``). inf means numpy's
        `inf` object.
    axis : {int, 2-tuple of ints, None}, optional
        If `axis` is an integer, it specifies the axis of `x` along which to
        compute the vector norms.  If `axis` is a 2-tuple, it specifies the
        axes that hold 2-D matrices, and the matrix norms of these matrices
        are computed.  If `axis` is None then either a vector norm (when `x`
        is 1-D) or a matrix norm (when `x` is 2-D) is returned.

    Returns
    -------
    n : float or ndarray

    Notes
    -----
    Some of the ord are not implemented because some associated functions like,
    _multi_svd_norm, are not yet available for sparse array.

    This docstring is modified based on numpy.linalg.norm.
    https://github.com/numpy/numpy/blob/main/numpy/linalg/linalg.py

    The following norms can be calculated:

    =====  ============================
    ord    norm for sparse arrays
    =====  ============================
    None   Frobenius norm
    'fro'  Frobenius norm
    inf    max(sum(abs(x), axis=1))
    -inf   min(sum(abs(x), axis=1))
    0      abs(x).sum(axis=axis)
    1      max(sum(abs(x), axis=0))
    -1     min(sum(abs(x), axis=0))
    2      Spectral norm (the largest singular value)
    -2     Not implemented
    other  Not implemented
    =====  ============================

    The Frobenius norm is given by [1]_:

        :math:`||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}`

    References
    ----------
    .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
        Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

    Examples
    --------
    >>> from scipy.sparse import csr_array, diags_array
    >>> import numpy as np
    >>> from scipy.sparse.linalg import norm
    >>> a = np.arange(9) - 4
    >>> a
    array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
    >>> b = a.reshape((3, 3))
    >>> b
    array([[-4, -3, -2],
           [-1, 0, 1],
           [ 2, 3, 4]])

    >>> b = csr_array(b)
    >>> norm(b)
    7.745966692414834
    >>> norm(b, 'fro')
    7.745966692414834
    >>> norm(b, np.inf)
    9
    >>> norm(b, -np.inf)
    2
    >>> norm(b, 1)
    7
    >>> norm(b, -1)
    6

    The matrix 2-norm or the spectral norm is the largest singular
    value, computed approximately and with limitations.

    >>> b = diags_array([-1, 1], [0, 1], shape=(9, 10))
    >>> norm(b, 2)
    1.9753...
    csr)target_formatz*input is not sparse. use numpy.linalg.normN)Nfrofz6'axis' must be None, an integer or a tuple of integers   zInvalid axis z for an array with shape zDuplicate axes given.   lobpcg)ksolverr   )axis)Nr   r   z Invalid norm order for matrices.)r   NzInvalid norm order for vectors.toarrayAz&Improper number of dimensions to norm.)r   r   	TypeErrorr   tocsrtuplerangendim
isinstanceintlenshape
ValueErrorr   NotImplementedErrorr   summaxr   infminr   powerhasattrr!   ravelr"   )r   ordr   msgint_axisendrow_axiscol_axismessage_saMs                 r   r   r      s   | 	'q>>>AA;; FDEEE |111%a((( 	
		A|U16]]##e$$ F	(4yyHH 	( 	( 	(C..a'	(8C.. {	
B
4yyA~~!(x$$$$"$$$$$")=)=)=)=2)=)=)=)=RdRRqwRRGW%%%b=HrM))4555!881(333GAq!Q4KBYY%%AXXq66::8:,,00222BF]]q66::8:,,00222BYYq66::8:,,00222RVG^^q66::8:,,00222&&&)!,,,?@@@	Taq2RdRRqwRRGW%%%"&==A


""AARVG^^A


""AAAXXa!$$AAAXXA


""AAISVV\\!__((a(0011AAKa K K K !BCCJKQc**..A.66C@@A1i   	99;;$$&&&Q__ 	399;;7799ABBBs0   B% %
C/B??C.O4 4
P>PP)NN)__doc__numpyr   scipy.sparser   scipy.sparse.linalgr   scipy.sparse._sputilsr   sparser
   r   r   __all__r   r    r   r   <module>rI      s         ! ! ! ! ! ! $ $ $ $ $ $ @ @ @ @ @ @              (     
oC oC oC oC oC oCr   