
    _Mh`                     D    d dl ZddlmZ ddlmZ dgZdddddddd	d
ZdS )    N   )_get_atol_rtol)make_systemtfqmrgh㈵>        F)rtolatolmaxiterMcallbackshowc                   | j         }	t          j        |	t          j                  rt          }	|                     |	          } t          j        |j         t          j                  r|                    |	          }t          | |||          \  } }}
}}t          j                            |          dk    r!|	                                }
 ||
          dfS | j
        d         }|t          d|dz            }||	                                }n||                     |
          z
  }|}|	                                }|}|                    |                     |                    }|}dx}x}}t          j        |                                |          j        }|}t          j        |          }|}|dk    r ||
          dfS t#          d|||          \  }}t%          |          D ]}|dz  dk    }|rIt          j        |                                |          }|dk    r ||
          dfc S ||z  }|||z  z
  }|||z  z  }||dz  |z  |z  |z  z   }t          j                            |          |z  }t          j        d	d
|dz  z   z            } ||| z  z  }| dz  |z  }|                    |          }!|
||!z  z  }
| ||
           |t          j        |d
z             z  |k     r&|rt'          d|d
z                ||
          dfc S |sqt          j        |                                |          }||z  }"||"|z  z   }|"|z  |"dz  |z  z   }|                    |                     |                    }||z  }|                    |                     |                    }|}|}|rt'          d|d
z                ||
          |fS )aN  
    Use Transpose-Free Quasi-Minimal Residual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse array, ndarray, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
        Alternatively, `A` can be a linear operator which can
        produce ``Ax`` using, e.g.,
        `scipy.sparse.linalg.LinearOperator`.
    b : {ndarray}
        Right hand side of the linear system. Has shape (N,) or (N,1).
    x0 : {ndarray}
        Starting guess for the solution.
    rtol, atol : float, optional
        Parameters for the convergence test. For convergence,
        ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
        The default is ``rtol=1e-5``, the default for ``atol`` is ``0.0``.
    maxiter : int, optional
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
        Default is ``min(10000, ndofs * 10)``, where ``ndofs = A.shape[0]``.
    M : {sparse array, ndarray, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function, optional
        User-supplied function to call after each iteration.  It is called
        as ``callback(xk)``, where ``xk`` is the current solution vector.
    show : bool, optional
        Specify ``show = True`` to show the convergence, ``show = False`` is
        to close the output of the convergence.
        Default is `False`.

    Returns
    -------
    x : ndarray
        The converged solution.
    info : int
        Provides convergence information:

            - 0  : successful exit
            - >0 : convergence to tolerance not achieved, number of iterations
            - <0 : illegal input or breakdown

    Notes
    -----
    The Transpose-Free QMR algorithm is derived from the CGS algorithm.
    However, unlike CGS, the convergence curves for the TFQMR method is
    smoothed by computing a quasi minimization of the residual norm. The
    implementation supports left preconditioner, and the "residual norm"
    to compute in convergence criterion is actually an upper bound on the
    actual residual norm ``||b - Axk||``.

    References
    ----------
    .. [1] R. W. Freund, A Transpose-Free Quasi-Minimal Residual Algorithm for
           Non-Hermitian Linear Systems, SIAM J. Sci. Comput., 14(2), 470-482,
           1993.
    .. [2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition,
           SIAM, Philadelphia, 2003.
    .. [3] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
           number 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia,
           1995.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csc_array
    >>> from scipy.sparse.linalg import tfqmr
    >>> A = csc_array([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = tfqmr(A, b, atol=0.0)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    r   r   Ni'  
   r      g      ?r   z:TFQMR: Linear solve converged due to reach TOL iterations z@TFQMR: Linear solve not converged due to reach MAXIT iterations )dtypenp
issubdtypeint64floatastyper   linalgnormcopyshapeminmatvecinner	conjugaterealsqrtr   rangeprint)#Abx0r   r	   r
   r   r   r   r   xpostprocessndofsruwrstarvuhatdthetaetarhorhoLastr0normtau_iterevenvtrstaralphauNextczbetas#                                      a/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/sparse/linalg/_isolve/tfqmr.pyr   r   	   s   h GE	}UBH%% HHUOO	}QWbh'' HHUOO)!QA66Aq!Q 
y~~aBFFHHA""GAJEeURZ((	zFFHHO	A	AE	!ADA
(5??$$a
(
(
-CGWS\\F
C{{A"" WfdD99GD!g ) )ax1} 	"hu00!44G"}}#A++++'ME	ME	UT\E!S(1,,	q!!C'GB!eQh,'((uqy!tunHHQKK	S1WHQKKK a 4'' . -$(F- - . . .KNNA&&&& 	(5??,,a00C=DD1HAttQw!m+A88AHHQKK((DIAA88AHHUOO,,DAGG & % F% % 	& 	& 	&KNNG$$    )N)numpyr   	iterativer   utilsr   __all__r    rA   r@   <module>rG      s{        % % % % % %       )j%Bej% j% j% j% j% j% j%rA   