
    _Mh                     t    d gZ ddlZddlmZ ddlZddlmZ erddlmZ	 d Z
	 dddd	dd
ddedej        f
dZdS )geometric_slerp    N)TYPE_CHECKING)	euclideanc                    t          j        | |g          }t           j                            |j                  \  }}dt          j        |          dk    z  dz
  }|j        |j        d d t           j        f         z  }|j        |j        d d t           j        f         z  }t          j        | |          }t           j                            |          }t          j	        ||          }	|\  } }t          j
        ||	z            }t          j        ||	z            }| |d d t           j        f         z  ||d d t           j        f         z  z   S )N   r      )npvstacklinalgqrTdiagnewaxisdotdetarctan2sincos)
startendtbasisQRsignscsomegas
             ^/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/spatial/_geometric_slerp.py_geometric_slerpr       s   Iucl##E9<<  DAqq!A%E	egaaam$$A	egaaam$$A 	ucA
	aAJq!E JE3
q5yA
q5yA1QQQ
]##cAaaam,<&<<<    Hz>r   znpt.ArrayLiker   r   tolreturnc                 >   t          j        | t           j                  } t          j        |t           j                  }t          j        |          }|j        dk    rt	          d          | j        dk    s|j        dk    rt	          d          | j        |j        k    rt	          d          | j        dk     s|j        dk     rt	          d          t          j        | |          rt          j        | | |j                  S | |fD ]F}t          j        t           j	        
                    |          dd	d
          st	          d          Gt          |t                    st	          d          t          j        |          }t          | |          }t          j        |dd
|          rt          j        dd           t          j        |t           j                  }|j        d
k    rt          j        d
| j        f          S |                                d
k     s|                                dk    rt	          d          |j        d
k    r5t)          | |t          j        |                                                    S t)          | ||          S )a  
    Geometric spherical linear interpolation.

    The interpolation occurs along a unit-radius
    great circle arc in arbitrary dimensional space.

    Parameters
    ----------
    start : (n_dimensions, ) array-like
        Single n-dimensional input coordinate in a 1-D array-like
        object. `n` must be greater than 1.
    end : (n_dimensions, ) array-like
        Single n-dimensional input coordinate in a 1-D array-like
        object. `n` must be greater than 1.
    t : float or (n_points,) 1D array-like
        A float or 1D array-like of doubles representing interpolation
        parameters, with values required in the inclusive interval
        between 0 and 1. A common approach is to generate the array
        with ``np.linspace(0, 1, n_pts)`` for linearly spaced points.
        Ascending, descending, and scrambled orders are permitted.
    tol : float
        The absolute tolerance for determining if the start and end
        coordinates are antipodes.

    Returns
    -------
    result : (t.size, D)
        An array of doubles containing the interpolated
        spherical path and including start and
        end when 0 and 1 t are used. The
        interpolated values should correspond to the
        same sort order provided in the t array. The result
        may be 1-dimensional if ``t`` is a float.

    Raises
    ------
    ValueError
        If ``start`` and ``end`` are antipodes, not on the
        unit n-sphere, or for a variety of degenerate conditions.

    See Also
    --------
    scipy.spatial.transform.Slerp : 3-D Slerp that works with quaternions

    Notes
    -----
    The implementation is based on the mathematical formula provided in [1]_,
    and the first known presentation of this algorithm, derived from study of
    4-D geometry, is credited to Glenn Davis in a footnote of the original
    quaternion Slerp publication by Ken Shoemake [2]_.

    .. versionadded:: 1.5.0

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp
    .. [2] Ken Shoemake (1985) Animating rotation with quaternion curves.
           ACM SIGGRAPH Computer Graphics, 19(3): 245-254.

    Examples
    --------
    Interpolate four linearly-spaced values on the circumference of
    a circle spanning 90 degrees:

    >>> import numpy as np
    >>> from scipy.spatial import geometric_slerp
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> start = np.array([1, 0])
    >>> end = np.array([0, 1])
    >>> t_vals = np.linspace(0, 1, 4)
    >>> result = geometric_slerp(start,
    ...                          end,
    ...                          t_vals)

    The interpolated results should be at 30 degree intervals
    recognizable on the unit circle:

    >>> ax.scatter(result[...,0], result[...,1], c='k')
    >>> circle = plt.Circle((0, 0), 1, color='grey')
    >>> ax.add_artist(circle)
    >>> ax.set_aspect('equal')
    >>> plt.show()

    Attempting to interpolate between antipodes on a circle is
    ambiguous because there are two possible paths, and on a
    sphere there are infinite possible paths on the geodesic surface.
    Nonetheless, one of the ambiguous paths is returned along
    with a warning:

    >>> opposite_pole = np.array([-1, 0])
    >>> with np.testing.suppress_warnings() as sup:
    ...     sup.filter(UserWarning)
    ...     geometric_slerp(start,
    ...                     opposite_pole,
    ...                     t_vals)
    array([[ 1.00000000e+00,  0.00000000e+00],
           [ 5.00000000e-01,  8.66025404e-01],
           [-5.00000000e-01,  8.66025404e-01],
           [-1.00000000e+00,  1.22464680e-16]])

    Extend the original example to a sphere and plot interpolation
    points in 3D:

    >>> from mpl_toolkits.mplot3d import proj3d
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111, projection='3d')

    Plot the unit sphere for reference (optional):

    >>> u = np.linspace(0, 2 * np.pi, 100)
    >>> v = np.linspace(0, np.pi, 100)
    >>> x = np.outer(np.cos(u), np.sin(v))
    >>> y = np.outer(np.sin(u), np.sin(v))
    >>> z = np.outer(np.ones(np.size(u)), np.cos(v))
    >>> ax.plot_surface(x, y, z, color='y', alpha=0.1)

    Interpolating over a larger number of points
    may provide the appearance of a smooth curve on
    the surface of the sphere, which is also useful
    for discretized integration calculations on a
    sphere surface:

    >>> start = np.array([1, 0, 0])
    >>> end = np.array([0, 0, 1])
    >>> t_vals = np.linspace(0, 1, 200)
    >>> result = geometric_slerp(start,
    ...                          end,
    ...                          t_vals)
    >>> ax.plot(result[...,0],
    ...         result[...,1],
    ...         result[...,2],
    ...         c='k')
    >>> plt.show()
    )dtyper   z:The interpolation parameter value must be one dimensional.z1Start and end coordinates must be one-dimensionalz;The dimensions of start and end must match (have same size)r   zLThe start and end coordinates must both be in at least two-dimensional spaceg      ?g&.>r   )rtolatolz(start and end are not on a unit n-sphereztol must be a floatg       @z_start and end are antipodes using the specified tolerance; this may cause ambiguous slerp paths)
stacklevelz)interpolation parameter must be in [0, 1])r	   asarrayfloat64ndim
ValueErrorsizearray_equallinspaceallcloser   norm
isinstancefloatfabsr   warningswarnemptyminmaxr    
atleast_1dravel)r   r   r   r#   coord
coord_dists         r   r   r   !   s   ^ JuBJ///E
*S

+
+
+C

1Avzz : ; ; 	; zQ#(a-- 3 4 4 	4 zSX ; < < 	< zA~~A ! " " 	" 
~eS!! 1{5%000  4 4{29>>%00# $ !# # # 	4  3 4 4 4	4 c5!! .///gcll5#&&J 
{:s555 $ = "#	$ 	$ 	$ 	$
 	
1BJ'''Av{{xEJ(((uuww{{aeeggkkDEEEv{{ # "a 0 02 227%''	:   # !# # 	#r!   )r"   )__all__r6   typingr   numpyr	   scipy.spatial.distancer   numpy.typingnptr    r4   ndarrayr    r!   r   <module>rG      s   
                  , , , , , , = = =0 	M# M#M#	M# M# 
	M#
 ZM# M# M# M# M# M#r!   