
    _Mh,                     p    d dl Zd dlmZ d dlmZmZ ddlmZ  ed dd           dd
dd            Z	dS )    N)_get_nan)array_namespacexp_copysign   )_axis_nan_policy_factoryc                     | S N xs    V/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/scipy/stats/_variation.py<lambda>r   
   s    a     c                     | fS r	   r
   r   s    r   r   r   
   s     r   )	n_outputsresult_to_tuple	propagateF)keepdimsc                X   t          |           }|                    |           } ||                    | d          } d}| j        |         }t	          |           }| j        dk    s||k    rUt          | j                  }|                    |           |                    ||          }	|	j	        dk    r|	d         n|	S |
                    | |          }
||k    rn|                    | |d          }|                    |dk    t          |                    |j                  |
          |          }	|	j	        dk    r|	d         n|	S t          j        dd	          5  |                    | ||          }||
z  }	ddd           n# 1 swxY w Y   |	j	        dk    r|	d         n|	S )
a  
    Compute the coefficient of variation.

    The coefficient of variation is the standard deviation divided by the
    mean.  This function is equivalent to::

        np.std(x, axis=axis, ddof=ddof) / np.mean(x)

    The default for ``ddof`` is 0, but many definitions of the coefficient
    of variation use the square root of the unbiased sample variance
    for the sample standard deviation, which corresponds to ``ddof=1``.

    The function does not take the absolute value of the mean of the data,
    so the return value is negative if the mean is negative.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate the coefficient of variation.
        Default is 0. If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains ``nan``.
        The following options are available:

          * 'propagate': return ``nan``
          * 'raise': raise an exception
          * 'omit': perform the calculation with ``nan`` values omitted

        The default is 'propagate'.
    ddof : int, optional
        Gives the "Delta Degrees Of Freedom" used when computing the
        standard deviation.  The divisor used in the calculation of the
        standard deviation is ``N - ddof``, where ``N`` is the number of
        elements.  `ddof` must be less than ``N``; if it isn't, the result
        will be ``nan`` or ``inf``, depending on ``N`` and the values in
        the array.  By default `ddof` is zero for backwards compatibility,
        but it is recommended to use ``ddof=1`` to ensure that the sample
        standard deviation is computed as the square root of the unbiased
        sample variance.

    Returns
    -------
    variation : ndarray
        The calculated variation along the requested axis.

    Notes
    -----
    There are several edge cases that are handled without generating a
    warning:

    * If both the mean and the standard deviation are zero, ``nan``
      is returned.
    * If the mean is zero and the standard deviation is nonzero, ``inf``
      is returned.
    * If the input has length zero (either because the array has zero
      length, or all the input values are ``nan`` and ``nan_policy`` is
      ``'omit'``), ``nan`` is returned.
    * If the input contains ``inf``, ``nan`` is returned.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import variation
    >>> variation([1, 2, 3, 4, 5], ddof=1)
    0.5270462766947299

    Compute the variation along a given dimension of an array that contains
    a few ``nan`` values:

    >>> x = np.array([[  10.0, np.nan, 11.0, 19.0, 23.0, 29.0, 98.0],
    ...               [  29.0,   30.0, 32.0, 33.0, 35.0, 56.0, 57.0],
    ...               [np.nan, np.nan, 12.0, 13.0, 16.0, 16.0, 17.0]])
    >>> variation(x, axis=1, ddof=1, nan_policy='omit')
    array([1.05109361, 0.31428986, 0.146483  ])

    N)r   )
fill_valuer
   )axis)r   
correctionignore)divideinvalid)r   asarrayreshapeshaper   sizelistpopfullndimmeanstdwherer   infnperrstate)ar   
nan_policyddofr   xpnNaNshpresultmean_astd_as               r   	variationr5   	   s   p 
		B


1A |JJq%  	A
1++Cv{{dQhh 17mm--#[A--vbzz69WWQTW""Fqyyqt22%!)[BF1C1CV%L%LcRR#[A--vbzz69	Hh	7	7	7    qt55                               ))6"::v5s   "FFF)r   r   r   )
numpyr)   scipy._lib._utilr   scipy._lib._array_apir   r   _axis_nan_policyr   r5   r
   r   r   <module>r:      s        % % % % % % > > > > > > > > 6 6 6 6 6 6 K1nn  t6U t6 t6 t6 t6 t6 t6 t6r   