
    1-Ph@P                         d Z ddlZddlZddlmZ ddlmZ ddlm	Z	 ddl
mZmZmZ dd
ZddZddZd Z	 	 	 	 ddZdS )z)
Methods to characterize image textures.
    N   )check_nD)gray2rgb)img_as_float   )
_glcm_loop_local_binary_pattern_multiblock_lbpFc                 0   t          | d           t          |dd           t          |dd           t          j        |           } |                                 }t          j        | j        t          j                  rt          d          | j        t          j        t          j	        fvr|t          d          t          j        | j        t          j
                  r't          j        | dk               rt          d	          |d
}||k    rt          d          t          j        |t          j                  }t          j        |t          j                  }t          j        ||t          |          t          |          ft          j        d          }t!          | ||||           |rt          j        |d          }||z   }|rD|                    t          j                  }t          j        |dd          }	d|	|	dk    <   ||	z  }|S )a  Calculate the gray-level co-occurrence matrix.

    A gray level co-occurrence matrix is a histogram of co-occurring
    grayscale values at a given offset over an image.

    .. versionchanged:: 0.19
               `greymatrix` was renamed to `graymatrix` in 0.19.

    Parameters
    ----------
    image : array_like
        Integer typed input image. Only positive valued images are supported.
        If type is other than uint8, the argument `levels` needs to be set.
    distances : array_like
        List of pixel pair distance offsets.
    angles : array_like
        List of pixel pair angles in radians.
    levels : int, optional
        The input image should contain integers in [0, `levels`-1],
        where levels indicate the number of gray-levels counted
        (typically 256 for an 8-bit image). This argument is required for
        16-bit images or higher and is typically the maximum of the image.
        As the output matrix is at least `levels` x `levels`, it might
        be preferable to use binning of the input image rather than
        large values for `levels`.
    symmetric : bool, optional
        If True, the output matrix `P[:, :, d, theta]` is symmetric. This
        is accomplished by ignoring the order of value pairs, so both
        (i, j) and (j, i) are accumulated when (i, j) is encountered
        for a given offset. The default is False.
    normed : bool, optional
        If True, normalize each matrix `P[:, :, d, theta]` by dividing
        by the total number of accumulated co-occurrences for the given
        offset. The elements of the resulting matrix sum to 1. The
        default is False.

    Returns
    -------
    P : 4-D ndarray
        The gray-level co-occurrence histogram. The value
        `P[i,j,d,theta]` is the number of times that gray-level `j`
        occurs at a distance `d` and at an angle `theta` from
        gray-level `i`. If `normed` is `False`, the output is of
        type uint32, otherwise it is float64. The dimensions are:
        levels x levels x number of distances x number of angles.

    References
    ----------
    .. [1] M. Hall-Beyer, 2007. GLCM Texture: A Tutorial
           https://prism.ucalgary.ca/handle/1880/51900
           DOI:`10.11575/PRISM/33280`
    .. [2] R.M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for
           image classification", IEEE Transactions on Systems, Man, and
           Cybernetics, vol. SMC-3, no. 6, pp. 610-621, Nov. 1973.
           :DOI:`10.1109/TSMC.1973.4309314`
    .. [3] M. Nadler and E.P. Smith, Pattern Recognition Engineering,
           Wiley-Interscience, 1993.
    .. [4] Wikipedia, https://en.wikipedia.org/wiki/Co-occurrence_matrix


    Examples
    --------
    Compute 4 GLCMs using 1-pixel distance and 4 different angles. For example,
    an angle of 0 radians refers to the neighboring pixel to the right;
    pi/4 radians to the top-right diagonal neighbor; pi/2 radians to the pixel
    above, and so forth.

    >>> image = np.array([[0, 0, 1, 1],
    ...                   [0, 0, 1, 1],
    ...                   [0, 2, 2, 2],
    ...                   [2, 2, 3, 3]], dtype=np.uint8)
    >>> result = graycomatrix(image, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4],
    ...                       levels=4)
    >>> result[:, :, 0, 0]
    array([[2, 2, 1, 0],
           [0, 2, 0, 0],
           [0, 0, 3, 1],
           [0, 0, 0, 1]], dtype=uint32)
    >>> result[:, :, 0, 1]
    array([[1, 1, 3, 0],
           [0, 1, 1, 0],
           [0, 0, 0, 2],
           [0, 0, 0, 0]], dtype=uint32)
    >>> result[:, :, 0, 2]
    array([[3, 0, 2, 0],
           [0, 2, 2, 0],
           [0, 0, 1, 2],
           [0, 0, 0, 0]], dtype=uint32)
    >>> result[:, :, 0, 3]
    array([[2, 0, 0, 0],
           [1, 1, 2, 0],
           [0, 0, 2, 1],
           [0, 0, 0, 0]], dtype=uint32)

    r   r   	distancesanglesz^Float images are not supported by graycomatrix. Convert the image to an unsigned integer type.Nz{The levels argument is required for data types other than uint8. The resulting matrix will be at least levels ** 2 in size.r   z)Negative-valued images are not supported.   zUThe maximum grayscale value in the image should be smaller than the number of levels.dtypeC)r   order)r   r   r      r   r   Taxiskeepdims)r   npascontiguousarraymax
issubdtyper   floating
ValueErroruint8int8signedintegeranyfloat64zeroslenuint32r   	transposeastypesum)
imager   r   levels	symmetricnormed	image_maxPPt	glcm_sumss
             W/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/skimage/feature/texture.pygraycomatrixr2      s   @ UAY;'''VQ!!! ''E		I	}U["+.. 
=
 
 	
 {28RW---&.)
 
 	
 
}U[""233 Fuqy8I8I FDEEE~F1
 
 	

 $YbjAAAI!&
;;;F
	YV5RYc	 	 	A
 ui333  \!\**F  HHRZ  F16D999	$%	)q.!	YH    contrastc                      fd}t           dd            j        \  }}}|k    rt          d          |dk    rt          d          |dk    rt          d                               t          j                   t	          j         dd	
          }d||dk    <    |z   t          j        ddf         \  }}|dk    r	||z
  dz  }	nJ|dk    rt	          j        ||z
            }	n,|dk    rdd||z
  dz  z   z  }	n|dv rnt          | d          |dk    r/t	          j         dz  d          }
t	          j	        |
          }n|dk    rt	          j         dz  d          }n|dk    r |            \  }}n|dk    r. |            \  }}t	          j         ||z
  dz  z  d          }nK|dk    rB |            \  }}t	          j         ||z
  dz  z  d          }t	          j	        |          }n|dk    rIt	          j
          dk    t	          j                              }t	          j         |z  d          }n|dk    rwt	          j        ||ft          j                  }t	          j        t                                                  dddf          }t	          j        t                                                  dddf          }|t	          j        | z  d          z
  }|t	          j        | z  d          z
  }t	          j	        t	          j         |dz  z  d                    }t	          j	        t	          j         |dz  z  d                    }t	          j         ||z  z  d          }|dk     }d	||dk     <   d||<   | }||         ||         ||         z  z  ||<   n6|dv r2|	                    ddf          }	t	          j         |	z  d          }|S )a
  Calculate texture properties of a GLCM.

    Compute a feature of a gray level co-occurrence matrix to serve as
    a compact summary of the matrix. The properties are computed as
    follows:

    - 'contrast': :math:`\sum_{i,j=0}^{levels-1} P_{i,j}(i-j)^2`
    - 'dissimilarity': :math:`\sum_{i,j=0}^{levels-1}P_{i,j}|i-j|`
    - 'homogeneity': :math:`\sum_{i,j=0}^{levels-1}\frac{P_{i,j}}{1+(i-j)^2}`
    - 'ASM': :math:`\sum_{i,j=0}^{levels-1} P_{i,j}^2`
    - 'energy': :math:`\sqrt{ASM}`
    - 'correlation':
        .. math:: \sum_{i,j=0}^{levels-1} P_{i,j}\left[\frac{(i-\mu_i) \
                  (j-\mu_j)}{\sqrt{(\sigma_i^2)(\sigma_j^2)}}\right]
    - 'mean': :math:`\sum_{i=0}^{levels-1} i*P_{i}`
    - 'variance': :math:`\sum_{i=0}^{levels-1} P_{i}*(i-mean)^2`
    - 'std': :math:`\sqrt{variance}`
    - 'entropy': :math:`\sum_{i,j=0}^{levels-1} -P_{i,j}*log(P_{i,j})`

    Each GLCM is normalized to have a sum of 1 before the computation of
    texture properties.

    .. versionchanged:: 0.19
           `greycoprops` was renamed to `graycoprops` in 0.19.

    Parameters
    ----------
    P : ndarray
        Input array. `P` is the gray-level co-occurrence histogram
        for which to compute the specified property. The value
        `P[i,j,d,theta]` is the number of times that gray-level j
        occurs at a distance d and at an angle theta from
        gray-level i.
    prop : {'contrast', 'dissimilarity', 'homogeneity', 'energy',             'correlation', 'ASM', 'mean', 'variance', 'std', 'entropy'}, optional
        The property of the GLCM to compute. The default is 'contrast'.

    Returns
    -------
    results : 2-D ndarray
        2-dimensional array. `results[d, a]` is the property 'prop' for
        the d'th distance and the a'th angle.

    References
    ----------
    .. [1] M. Hall-Beyer, 2007. GLCM Texture: A Tutorial v. 1.0 through 3.0.
           The GLCM Tutorial Home Page,
           https://prism.ucalgary.ca/handle/1880/51900
           DOI:`10.11575/PRISM/33280`

    Examples
    --------
    Compute the contrast for GLCMs with distances [1, 2] and angles
    [0 degrees, 90 degrees]

    >>> image = np.array([[0, 0, 1, 1],
    ...                   [0, 0, 1, 1],
    ...                   [0, 2, 2, 2],
    ...                   [2, 2, 3, 3]], dtype=np.uint8)
    >>> g = graycomatrix(image, [1, 2], [0, np.pi/2], levels=4,
    ...                  normed=True, symmetric=True)
    >>> contrast = graycoprops(g, 'contrast')
    >>> contrast
    array([[0.58333333, 1.        ],
           [1.25      , 2.75      ]])

    c                      t          j                                      dddf          } t          j        | z  d          }| |fS )Nr   r   r   )r   arangereshaper(   )Imeanr.   	num_levels     r1   	glcm_meanzgraycoprops.<locals>.glcm_mean   sJ    Ii  (()Q1)=>>va!e&)))$wr3      r.   z'num_level and num_level2 must be equal.r   znum_dist must be positive.znum_angle must be positive.r   Tr   r   r4   r   dissimilarityhomogeneityg      ?)ASMenergycorrelationentropyvariancer;   stdz is an invalid propertyrB   r7   rA   r;   rE   rF   rD   )whereoutrC   r   gV瞯<)r4   r?   r@   )r   shaper   r'   r   r"   r(   ogridabssqrtlog
zeros_liker#   arrayranger9   )r.   propr=   
num_level2num_dist	num_angler0   r:   Jweightsasmresults_r;   varlndiff_idiff_jstd_istd_jcovmask_0mask_1r<   s   `                      @r1   graycopropsrc      sl   J     
 Q33470Y
HiJBCCC1}}5666A~~6777 	
Aqv555I !Ii1nNA 8AiK9,-DAqzq5Q,		 	 &Q--			A!|+,	W	W	WD999::: xfQT''''#,,	&AF+++	Y[[
77			)++4&q4xAo.V<<<	)++4fQ1t8/*888'#,,			fQqAvBM!,<,<====&Rf---			(Hi0
CCCHU9%%&&..	1a/CDDHU9%%&&..9a/CDDRVAE////RVAE////qFq=0v>>>??qFq=0v>>>??fQ&6/*888  $uu} f+vv)FG	=	=	=//9iA">??&W6222Nr3   defaultc                    t          | d           t          d          t          d          t          d          t          d          t          d          d}t          j        | j        t          j                  rt          j        d           t          j        | t          j	        	          } t          | ||||                                                   }|S )
aS	  Compute the local binary patterns (LBP) of an image.

    LBP is a visual descriptor often used in texture classification.

    Parameters
    ----------
    image : (M, N) array
        2D grayscale image.
    P : int
        Number of circularly symmetric neighbor set points (quantization of
        the angular space).
    R : float
        Radius of circle (spatial resolution of the operator).
    method : str {'default', 'ror', 'uniform', 'nri_uniform', 'var'}, optional
        Method to determine the pattern:

        ``default``
            Original local binary pattern which is grayscale invariant but not
            rotation invariant.
        ``ror``
            Extension of default pattern which is grayscale invariant and
            rotation invariant.
        ``uniform``
            Uniform pattern which is grayscale invariant and rotation
            invariant, offering finer quantization of the angular space.
            For details, see [1]_.
        ``nri_uniform``
            Variant of uniform pattern which is grayscale invariant but not
            rotation invariant. For details, see [2]_ and [3]_.
        ``var``
            Variance of local image texture (related to contrast)
            which is rotation invariant but not grayscale invariant.

    Returns
    -------
    output : (M, N) array
        LBP image.

    References
    ----------
    .. [1] T. Ojala, M. Pietikainen, T. Maenpaa, "Multiresolution gray-scale
           and rotation invariant texture classification with local binary
           patterns", IEEE Transactions on Pattern Analysis and Machine
           Intelligence, vol. 24, no. 7, pp. 971-987, July 2002
           :DOI:`10.1109/TPAMI.2002.1017623`
    .. [2] T. Ahonen, A. Hadid and M. Pietikainen. "Face recognition with
           local binary patterns", in Proc. Eighth European Conf. Computer
           Vision, Prague, Czech Republic, May 11-14, 2004, pp. 469-481, 2004.
           http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6851
           :DOI:`10.1007/978-3-540-24670-1_36`
    .. [3] T. Ahonen, A. Hadid and M. Pietikainen, "Face Description with
           Local Binary Patterns: Application to Face Recognition",
           IEEE Transactions on Pattern Analysis and Machine Intelligence,
           vol. 28, no. 12, pp. 2037-2041, Dec. 2006
           :DOI:`10.1109/TPAMI.2006.244`
    r   DRUNV)rd   roruniformnri_uniformrZ   zApplying `local_binary_pattern` to floating-point images may give unexpected results when small numerical differences between adjacent pixels are present. It is recommended to use this function with images of integer dtype.r   )r   ordr   r   r   r   warningswarnr   r"   r	   lower)r)   r.   rg   methodmethodsoutputs         r1   local_binary_patternru   >  s    r UA s883xxs883xx3xx G 
}U["+.. 
5	
 	
 	
  bj999E"5!Q0GHHFMr3   c                 l    t          j        | t           j                  } t          | ||||          }|S )a  Multi-block local binary pattern (MB-LBP).

    The features are calculated similarly to local binary patterns (LBPs),
    (See :py:meth:`local_binary_pattern`) except that summed blocks are
    used instead of individual pixel values.

    MB-LBP is an extension of LBP that can be computed on multiple scales
    in constant time using the integral image. Nine equally-sized rectangles
    are used to compute a feature. For each rectangle, the sum of the pixel
    intensities is computed. Comparisons of these sums to that of the central
    rectangle determine the feature, similarly to LBP.

    Parameters
    ----------
    int_image : (N, M) array
        Integral image.
    r : int
        Row-coordinate of top left corner of a rectangle containing feature.
    c : int
        Column-coordinate of top left corner of a rectangle containing feature.
    width : int
        Width of one of the 9 equal rectangles that will be used to compute
        a feature.
    height : int
        Height of one of the 9 equal rectangles that will be used to compute
        a feature.

    Returns
    -------
    output : int
        8-bit MB-LBP feature descriptor.

    References
    ----------
    .. [1] L. Zhang, R. Chu, S. Xiang, S. Liao, S.Z. Li. "Face Detection Based
           on Multi-Block LBP Representation", In Proceedings: Advances in
           Biometrics, International Conference, ICB 2007, Seoul, Korea.
           http://www.cbsr.ia.ac.cn/users/scliao/papers/Zhang-ICB07-MBLBP.pdf
           :DOI:`10.1007/978-3-540-74549-5_2`
    r   )r   r   float32r
   )	int_imagercwidthheightlbp_codes         r1   multiblock_lbpr~     s6    T $YbjAAAIy!Qv>>HOr3   r   r   r   r   gGz?gQ?      ?c	                    t          j        |t           j                  }t          j        |t           j                  }t          j        |           }	t	          | j                  dk     rt          |           }	t          |	          }	d}
t          j        |
          }
|
dddfxx         |z  cc<   |
dddfxx         |z  cc<   ||z   }||z   }t          |
          D ]\  }}|\  }}||z   }||z   }|dd|z
  z  z  }|r2d|z
  |	|||z   |||z   f         z  ||z  z   }||	|||z   |||z   f<   Sd|z
  |	|||z   |||z   f         z  ||z  z   }||	|||z   |||z   f<   |	S )a  Multi-block local binary pattern visualization.

    Blocks with higher sums are colored with alpha-blended white rectangles,
    whereas blocks with lower sums are colored alpha-blended cyan. Colors
    and the `alpha` parameter can be changed.

    Parameters
    ----------
    image : ndarray of float or uint
        Image on which to visualize the pattern.
    r : int
        Row-coordinate of top left corner of a rectangle containing feature.
    c : int
        Column-coordinate of top left corner of a rectangle containing feature.
    width : int
        Width of one of 9 equal rectangles that will be used to compute
        a feature.
    height : int
        Height of one of 9 equal rectangles that will be used to compute
        a feature.
    lbp_code : int
        The descriptor of feature to visualize. If not provided, the
        descriptor with 0 value will be used.
    color_greater_block : tuple of 3 floats
        Floats specifying the color for the block that has greater
        intensity value. They should be in the range [0, 1].
        Corresponding values define (R, G, B) values. Default value
        is white (1, 1, 1).
    color_greater_block : tuple of 3 floats
        Floats specifying the color for the block that has greater intensity
        value. They should be in the range [0, 1]. Corresponding values define
        (R, G, B) values. Default value is cyan (0, 0.69, 0.96).
    alpha : float
        Value in the range [0, 1] that specifies opacity of visualization.
        1 - fully transparent, 0 - opaque.

    Returns
    -------
    output : ndarray of float
        Image with MB-LBP visualization.

    References
    ----------
    .. [1] L. Zhang, R. Chu, S. Xiang, S. Liao, S.Z. Li. "Face Detection Based
           on Multi-Block LBP Representation", In Proceedings: Advances in
           Biometrics, International Conference, ICB 2007, Seoul, Korea.
           http://www.cbsr.ia.ac.cn/users/scliao/papers/Zhang-ICB07-MBLBP.pdf
           :DOI:`10.1007/978-3-540-74549-5_2`
    r   r   ))r   )r   r   )r   r   r   )r   r   )r   r   )r   r   )r   r   Nr   r      )
r   asarrayr"   copyr$   rI   r   r   rO   	enumerate)r)   ry   rz   r{   r|   r}   color_greater_blockcolor_less_blockalphart   neighbor_rect_offsetscentral_rect_rcentral_rect_celement_numoffsetoffset_roffset_ccurr_rcurr_chas_greater_value	new_values                        r1   draw_multiblock_lbpr     s   @ *%8
KKKz"2"*EEE WU^^F 5;!% &!!F	 H%:;;!!!Q$6)!!!Q$5( ZNYN()>?? R RV#((*(*$a+o(>?  		RUf&(&6E>*AA' ++,I IRF6FVO+Vfun-DDEEUf&(&6E>*AA' (()I IRF6FVO+Vfun-DDEEMr3   )NFF)r4   )rd   )r   r   r   r   )__doc__ro   numpyr   _shared.utilsr   colorr   utilr   _texturer   r	   r
   r2   rc   ru   r~   r    r3   r1   <module>r      s         $ $ $ $ $ $             H H H H H H H H H HX X X XvQ Q Q QhK K K K\, , ,j !$
w w w w w wr3   