
    0-Phx                     &    d dl mZ d dlmZ ddZdS )    )unique)entropy   c                 L    t          | d          \  }}t          ||          S )a  Calculate the Shannon entropy of an image.

    The Shannon entropy is defined as S = -sum(pk * log(pk)),
    where pk are frequency/probability of pixels of value k.

    Parameters
    ----------
    image : (M, N) ndarray
        Grayscale input image.
    base : float, optional
        The logarithmic base to use.

    Returns
    -------
    entropy : float

    Notes
    -----
    The returned value is measured in bits or shannon (Sh) for base=2, natural
    unit (nat) for base=np.e and hartley (Hart) for base=10.

    References
    ----------
    .. [1] `https://en.wikipedia.org/wiki/Entropy_(information_theory) <https://en.wikipedia.org/wiki/Entropy_(information_theory)>`_
    .. [2] https://en.wiktionary.org/wiki/Shannon_entropy

    Examples
    --------
    >>> from skimage import data
    >>> from skimage.measure import shannon_entropy
    >>> shannon_entropy(data.camera())
    7.231695011055706
    T)return_counts)base)r   scipy_entropy)imager   _countss       W/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/skimage/measure/entropy.pyshannon_entropyr      s.    F uD111IAvd++++    N)r   )numpyr   scipy.statsr   r	   r    r   r   <module>r      sG          0 0 0 0 0 0$, $, $, $, $, $,r   