
    0-PhE1                     z    d Z ddlZddlmZ ddlmZ ddZddZddZ	ddZ
d	 Zd
 Zd ZddZd ZddZddZdS )a  Function of unitary fourier transform (uft) and utilities

This module implements the unitary fourier transform, also known as
the ortho-normal transform. It is especially useful for convolution
[1], as it respects the Parseval equality. The value of the null
frequency is equal to

.. math::  \frac{1}{\sqrt{n}} \sum_i x_i

so the Fourier transform has the same energy as the original image
(see ``image_quad_norm`` function). The transform is applied from the
last axis for performance (assuming a C-order array input).

References
----------
.. [1] B. R. Hunt "A matrix theory proof of the discrete convolution
       theorem", IEEE Trans. on Audio and Electroacoustics,
       vol. au-19, no. 4, pp. 285-288, dec. 1971

    N   )_supported_float_typec                 d    || j         }t          j        | t          | d          d          }|S )aI  N-dimensional unitary Fourier transform.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray (same shape than inarray)
        The unitary N-D Fourier transform of ``inarray``.

    Examples
    --------
    >>> input = np.ones((3, 3, 3))
    >>> output = ufftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (3, 3, 3)
    Nr   orthoaxesnorm)ndimfftfftnrangeinarraydimoutarrays      W/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/skimage/restoration/uft.pyufftnr      s5    2 {lxeSD!nn7CCCHO    c                 d    || j         }t          j        | t          | d          d          }|S )aj  N-dimensional unitary inverse Fourier transform.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray
        The unitary inverse nD Fourier transform of ``inarray``. Has the same shape as
        ``inarray``.

    Examples
    --------
    >>> input = np.ones((3, 3, 3))
    >>> output = uifftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (3, 3, 3)
    Nr   r   r   )r
   r   ifftnr   r   s      r   uifftnr   ;   s5    4 {lyucT1~~GDDDHOr   c                 d    || j         }t          j        | t          | d          d          }|S )a  N-dimensional real unitary Fourier transform.

    This transform considers the Hermitian property of the transform on
    real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M[, ...], P)
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray, shape (M[, ...], P / 2 + 1)
        The unitary N-D real Fourier transform of ``inarray``.

    Notes
    -----
    The ``urfft`` functions assume an input array of real
    values. Consequently, the output has a Hermitian property and
    redundant values are not computed or returned.

    Examples
    --------
    >>> input = np.ones((5, 5, 5))
    >>> output = urfftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (5, 5, 3)
    Nr   r   r   )r
   r   rfftnr   r   s      r   urfftnr   [   s6    D {lyucT1~~GDDDHOr   c                 f    || j         }t          j        | |t          | d          d          }|S )aQ  N-dimensional inverse real unitary Fourier transform.

    This transform considers the Hermitian property of the transform
    from complex to real input.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.
    shape : tuple of int, optional
        The shape of the output. The shape of ``rfft`` is ambiguous in
        case of odd-valued input shape. In this case, this parameter
        should be provided. See ``np.fft.irfftn``.

    Returns
    -------
    outarray : ndarray
        The unitary N-D inverse real Fourier transform of ``inarray``.

    Notes
    -----
    The ``uirfft`` function assumes that the output array is
    real-valued. Consequently, the input is assumed to have a Hermitian
    property and redundant values are implicit.

    Examples
    --------
    >>> input = np.ones((5, 5, 5))
    >>> output = uirfftn(urfftn(input), shape=input.shape)
    >>> np.allclose(input, output)
    True
    >>> output.shape
    (5, 5, 5)
    Nr   r   r   )r
   r   irfftnr   )r   r   shaper   s       r   uirfftnr      s8    L {lz'5ucT1~~GLLLHOr   c                 "    t          | d          S )ap  2-dimensional unitary Fourier transform.

    Compute the Fourier transform on the last 2 axes.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.

    Returns
    -------
    outarray : ndarray (same shape as inarray)
        The unitary 2-D Fourier transform of ``inarray``.

    See Also
    --------
    uifft2, ufftn, urfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = ufft2(input)
    >>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size),
    ...             output[1, 0, 0])
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   r   s    r   ufft2r!      s    : !r   c                 "    t          | d          S )a  2-dimensional inverse unitary Fourier transform.

    Compute the inverse Fourier transform on the last 2 axes.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.

    Returns
    -------
    outarray : ndarray (same shape as inarray)
        The unitary 2-D inverse Fourier transform of ``inarray``.

    See Also
    --------
    uifft2, uifftn, uirfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = uifft2(input)
    >>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size),
    ...             output[0, 0, 0])
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   r    s    r   uifft2r#      s    : '1r   c                 "    t          | d          S )a  2-dimensional real unitary Fourier transform

    Compute the real Fourier transform on the last 2 axes. This
    transform considers the Hermitian property of the transform from
    complex to real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M[, ...], P)
        The array to transform.

    Returns
    -------
    outarray : ndarray, shape (M[, ...], 2 * (P - 1))
        The unitary 2-D real Fourier transform of ``inarray``.

    See Also
    --------
    ufft2, ufftn, urfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = urfft2(input)
    >>> np.allclose(np.sum(input[1,...]) / np.sqrt(input[1,...].size),
    ...             output[1, 0, 0])
    True
    >>> output.shape
    (10, 128, 65)
    r   )r   r    s    r   urfft2r%      s    > '1r   c                 &    t          | d|          S )a  2-dimensional inverse real unitary Fourier transform.

    Compute the real inverse Fourier transform on the last 2 axes.
    This transform considers the Hermitian property of the transform
    from complex to real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M[, ...], P)
        The array to transform.
    shape : tuple of int, optional
        The shape of the output. The shape of ``rfft`` is ambiguous in
        case of odd-valued input shape. In this case, this parameter
        should be provided. See ``np.fft.irfftn``.

    Returns
    -------
    outarray : ndarray, shape (M[, ...], 2 * (P - 1))
        The unitary 2-D inverse real Fourier transform of ``inarray``.

    See Also
    --------
    urfft2, uifftn, uirfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = uirfftn(urfftn(input), shape=input.shape)
    >>> np.allclose(input, output)
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   )r   )r   r   s     r   uirfft2r'     s    D 7AU++++r   c                    | j         d         | j         d         k    rtdt          j        t          j        t          j        |           dz  d          d          z  t          j        t          j        | d                   dz  d          z
  S t          j        t          j        t          j        |           dz  d          d          S )aE  Return the quadratic norm of images in Fourier space.

    This function detects whether the input image satisfies the
    Hermitian property.

    Parameters
    ----------
    inarray : ndarray
        Input image. The image data should reside in the final two
        axes.

    Returns
    -------
    norm : float
        The quadratic norm of ``inarray``.

    Examples
    --------
    >>> input = np.ones((5, 5))
    >>> image_quad_norm(ufft2(input)) == np.sum(np.abs(input)**2)
    True
    >>> image_quad_norm(ufft2(input)) == image_quad_norm(urfft2(input))
    True
    r   )axis).r   )r   npsumabsr    s    r   image_quad_normr/   6  s    4 }RGM"---26"&A!5B???bIIIIBFF76?##q(rM
 M
 M
 
 	
 vbfRVG__1;;;"EEEEr   Tc           
      F   |s| j         }t          | j                  }t          j        ||          }| |t          d | j        D                       <   t          | j                  D ]M\  }}|| j         |z
  k    r:t          j        |t          t          j
        |dz                       |          }N|rt          j        nt          j        } ||t          | d                    }	t          j        |t          j                  }
|	                    |
d          S )	a  Compute the transfer function of an impulse response (IR).

    This function makes the necessary correct zero-padding, zero
    convention, correct fft2, etc... to compute the transfer function
    of IR. To use with unitary Fourier transform for the signal (ufftn
    or equivalent).

    Parameters
    ----------
    imp_resp : ndarray
        The impulse responses.
    shape : tuple of int
        A tuple of integer corresponding to the target shape of the
        transfer function.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.
    is_real : boolean, optional
       If True (default), imp_resp is supposed real and the Hermitian property
       is used with rfftn Fourier transform.

    Returns
    -------
    y : complex ndarray
       The transfer function of shape ``shape``.

    See Also
    --------
    ufftn, uifftn, urfftn, uirfftn

    Examples
    --------
    >>> np.all(np.array([[4, 0], [0, 0]]) == ir2tf(np.ones((2, 2)), (2, 2)))
    True
    >>> ir2tf(np.ones((2, 2)), (512, 512)).shape == (512, 257)
    True
    >>> ir2tf(np.ones((2, 2)), (512, 512), is_real=False).shape == (512, 512)
    True

    Notes
    -----
    The input array can be composed of multiple-dimensional IR with
    an arbitrary number of IR. The individual IR must be accessed
    through the first axes. The last ``dim`` axes contain the space
    definition.
    )dtypec                 .    g | ]}t          d |          S )r   )slice).0ss     r   
<listcomp>zir2tf.<locals>.<listcomp>  s     888AE!QKK888r   r   )shiftr+   r   )r   F)copy)r
   r   r1   r,   zerostupler   	enumeraterollintfloorr   r   r   r   promote_types	complex64astype)imp_respr   r   is_realirpadded_dtypeirpaddedr+   	axis_sizefuncout
cplx_dtypes              r   ir2tfrJ   X  s   ^  m*8>::Nx^444H=EHU8888899: %X^44 Y Yi8=3&&&wxBHY]4K4K0L0L/LSWXXXH-399SXD
$xucT1~~
/
/
/C !.",??J::ju:---r   c                    t          j        dg| z            }t          |           D ]t          t	          dd          gz  t	          d          gz   t	          dd          g| z
  dz
  z  z             }t          j        g d                              fdt          |           D                       ||<   d| z  |t	          dd          f| z  <   t          |||          |fS )	a8  Return the transfer function of the Laplacian.

    Laplacian is the second order difference, on row and column.

    Parameters
    ----------
    ndim : int
        The dimension of the Laplacian.
    shape : tuple
        The support on which to compute the transfer function.
    is_real : boolean, optional
       If True (default), imp_resp is assumed to be real-valued and
       the Hermitian property is used with rfftn Fourier transform
       to return the transfer function.

    Returns
    -------
    tf : array_like, complex
        The transfer function.
    impr : array_like, real
        The Laplacian.

    Examples
    --------
    >>> tf, ir = laplacian(2, (32, 32))
    >>> np.all(ir == np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]))
    True
    >>> np.all(tf == ir2tf(ir, (32, 32)))
    True
          r   N)      g        rN   c                 $    g | ]}|k    rd ndS )r)   rM    )r4   ir   s     r   r6   zlaplacian.<locals>.<listcomp>  s%    888q188RR888r   g       @)rC   )r,   r9   r   r:   r3   arrayreshaperJ   )r
   r   rC   impridxr   s        @r   	laplacianrV     s    > 8QC$JDT{{ 
 
1a[[MC5;;-/5A;;-4#:PQ>2RR
 
 H...//778888E$KK888
 
S		 #&*D%1++$	ug...44r   )N)NN)NT)T)__doc__numpyr,   	scipy.fftr   _shared.utilsr   r   r   r   r   r!   r#   r%   r'   r/   rJ   rV   rP   r   r   <module>r[      s#   *           1 1 1 1 1 1   >   @% % % %P) ) ) )X  @  @  D", ", ", ",JF F FD@. @. @. @.F(5 (5 (5 (5 (5 (5r   