
    0Ph@K                     z    d dl mZ ddlmZ ddlmZmZ ddlmZm	Z	m
Z
  G d de	          Z G d	 d
e
          ZdS )    )Real   )_fit_context)Interval
StrOptions   )DEFAULT_EPSILONBaseSGDClassifierBaseSGDRegressorc                        e Zd ZU dZi ej         eddh          g eeddd          gdZe	e
d	<   d
ddddddddddddddd fd
Z ed          dd            Z ed          dd            Z xZS )PassiveAggressiveClassifierae  Passive Aggressive Classifier.

    Read more in the :ref:`User Guide <passive_aggressive>`.

    Parameters
    ----------
    C : float, default=1.0
        Maximum step size (regularization). Defaults to 1.0.

    fit_intercept : bool, default=True
        Whether the intercept should be estimated or not. If False, the
        data is assumed to be already centered.

    max_iter : int, default=1000
        The maximum number of passes over the training data (aka epochs).
        It only impacts the behavior in the ``fit`` method, and not the
        :meth:`~sklearn.linear_model.PassiveAggressiveClassifier.partial_fit` method.

        .. versionadded:: 0.19

    tol : float or None, default=1e-3
        The stopping criterion. If it is not None, the iterations will stop
        when (loss > previous_loss - tol).

        .. versionadded:: 0.19

    early_stopping : bool, default=False
        Whether to use early stopping to terminate training when validation
        score is not improving. If set to True, it will automatically set aside
        a stratified fraction of training data as validation and terminate
        training when validation score is not improving by at least `tol` for
        `n_iter_no_change` consecutive epochs.

        .. versionadded:: 0.20

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if early_stopping is True.

        .. versionadded:: 0.20

    n_iter_no_change : int, default=5
        Number of iterations with no improvement to wait before early stopping.

        .. versionadded:: 0.20

    shuffle : bool, default=True
        Whether or not the training data should be shuffled after each epoch.

    verbose : int, default=0
        The verbosity level.

    loss : str, default="hinge"
        The loss function to be used:
        hinge: equivalent to PA-I in the reference paper.
        squared_hinge: equivalent to PA-II in the reference paper.

    n_jobs : int or None, default=None
        The number of CPUs to use to do the OVA (One Versus All, for
        multi-class problems) computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    random_state : int, RandomState instance, default=None
        Used to shuffle the training data, when ``shuffle`` is set to
        ``True``. Pass an int for reproducible output across multiple
        function calls.
        See :term:`Glossary <random_state>`.

    warm_start : bool, default=False
        When set to True, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.
        See :term:`the Glossary <warm_start>`.

        Repeatedly calling fit or partial_fit when warm_start is True can
        result in a different solution than when calling fit a single time
        because of the way the data is shuffled.

    class_weight : dict, {class_label: weight} or "balanced" or None,             default=None
        Preset for the class_weight fit parameter.

        Weights associated with classes. If not given, all classes
        are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

        .. versionadded:: 0.17
           parameter *class_weight* to automatically weight samples.

    average : bool or int, default=False
        When set to True, computes the averaged SGD weights and stores the
        result in the ``coef_`` attribute. If set to an int greater than 1,
        averaging will begin once the total number of samples seen reaches
        average. So average=10 will begin averaging after seeing 10 samples.

        .. versionadded:: 0.19
           parameter *average* to use weights averaging in SGD.

    Attributes
    ----------
    coef_ : ndarray of shape (1, n_features) if n_classes == 2 else             (n_classes, n_features)
        Weights assigned to the features.

    intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,)
        Constants in decision function.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        The actual number of iterations to reach the stopping criterion.
        For multiclass fits, it is the maximum over every binary fit.

    classes_ : ndarray of shape (n_classes,)
        The unique classes labels.

    t_ : int
        Number of weight updates performed during training.
        Same as ``(n_iter_ * n_samples + 1)``.

    See Also
    --------
    SGDClassifier : Incrementally trained logistic regression.
    Perceptron : Linear perceptron classifier.

    References
    ----------
    Online Passive-Aggressive Algorithms
    <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
    K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)

    Examples
    --------
    >>> from sklearn.linear_model import PassiveAggressiveClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_features=4, random_state=0)
    >>> clf = PassiveAggressiveClassifier(max_iter=1000, random_state=0,
    ... tol=1e-3)
    >>> clf.fit(X, y)
    PassiveAggressiveClassifier(random_state=0)
    >>> print(clf.coef_)
    [[0.26642044 0.45070924 0.67251877 0.64185414]]
    >>> print(clf.intercept_)
    [1.84127814]
    >>> print(clf.predict([[0, 0, 0, 0]]))
    [1]
    hingesquared_hinger   Nrightclosed)lossC_parameter_constraints      ?T  MbP?F皙?   )r   fit_interceptmax_itertolearly_stoppingvalidation_fractionn_iter_no_changeshuffleverboser   n_jobsrandom_state
warm_startclass_weightaveragec                    t                                          d ||||||||	|d||||           || _        |
| _        d S )Nr   )penaltyr   r   r   r   r   r    r!   r"   r$   eta0r%   r&   r'   r#   super__init__r   r   )selfr   r   r   r   r   r   r    r!   r"   r   r#   r$   r%   r&   r'   	__class__s                   h/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/sklearn/linear_model/_passive_aggressive.pyr-   z$PassiveAggressiveClassifier.__init__   sg    & 	') 3-%!% 	 	
 	
 	
$ 			    prefer_skip_nested_validationc                     t          | d          s0|                     d           | j        dk    rt          d          | j        dk    rdnd}|                     ||d	| j        d|d
|ddd          S )a+  Fit linear model with Passive Aggressive algorithm.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Subset of the training data.

        y : array-like of shape (n_samples,)
            Subset of the target values.

        classes : ndarray of shape (n_classes,)
            Classes across all calls to partial_fit.
            Can be obtained by via `np.unique(y_all)`, where y_all is the
            target vector of the entire dataset.
            This argument is required for the first call to partial_fit
            and can be omitted in the subsequent calls.
            Note that y doesn't need to contain all labels in `classes`.

        Returns
        -------
        self : object
            Fitted estimator.
        classes_Tfor_partial_fitbalanceda\  class_weight 'balanced' is not supported for partial_fit. For 'balanced' weights, use `sklearn.utils.compute_class_weight` with `class_weight='balanced'`. In place of y you can use a large enough subset of the full training set target to properly estimate the class frequency distributions. Pass the resulting weights as the class_weight parameter.r   pa1pa2r   r   N)	alphar   r   learning_rater   classessample_weight	coef_initintercept_init)hasattr_more_validate_paramsr&   
ValueErrorr   _partial_fitr   )r.   Xyr=   lrs        r0   partial_fitz'PassiveAggressiveClassifier.partial_fit   s    2 tZ(( 	&&t&<<< J.. !
 
 
 i7**UU  f ! 
 
 	
r1   c           
          |                                   | j        dk    rdnd}|                     ||d| j        d|||          S )ab  Fit linear model with Passive Aggressive algorithm.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,)
            Target values.

        coef_init : ndarray of shape (n_classes, n_features)
            The initial coefficients to warm-start the optimization.

        intercept_init : ndarray of shape (n_classes,)
            The initial intercept to warm-start the optimization.

        Returns
        -------
        self : object
            Fitted estimator.
        r   r9   r:   r   r;   r   r   r<   r?   r@   rB   r   _fitr   r.   rE   rF   r?   r@   rG   s         r0   fitzPassiveAggressiveClassifier.fit  s`    . 	""$$$i7**UUyyf)  	
 	
 		
r1   )NNN)__name__
__module____qualname____doc__r
   r   r   r   r   dict__annotations__r-   r   rH   rN   __classcell__r/   s   @r0   r   r      s?        ` `D$

2$Wo6778htQW5556$ $ $D    #& & & & & & &P \5555
 5
 5
 655
n \555"
 "
 "
 65"
 "
 "
 "
 "
r1   r   c                       e Zd ZU dZi ej         eddh          g eeddd          g eeddd          gd	Ze	e
d
<   ddddddddddedddd fd
Z ed          d             Z ed          dd            Z xZS )PassiveAggressiveRegressora6  Passive Aggressive Regressor.

    Read more in the :ref:`User Guide <passive_aggressive>`.

    Parameters
    ----------

    C : float, default=1.0
        Maximum step size (regularization). Defaults to 1.0.

    fit_intercept : bool, default=True
        Whether the intercept should be estimated or not. If False, the
        data is assumed to be already centered. Defaults to True.

    max_iter : int, default=1000
        The maximum number of passes over the training data (aka epochs).
        It only impacts the behavior in the ``fit`` method, and not the
        :meth:`~sklearn.linear_model.PassiveAggressiveRegressor.partial_fit` method.

        .. versionadded:: 0.19

    tol : float or None, default=1e-3
        The stopping criterion. If it is not None, the iterations will stop
        when (loss > previous_loss - tol).

        .. versionadded:: 0.19

    early_stopping : bool, default=False
        Whether to use early stopping to terminate training when validation.
        score is not improving. If set to True, it will automatically set aside
        a fraction of training data as validation and terminate
        training when validation score is not improving by at least tol for
        n_iter_no_change consecutive epochs.

        .. versionadded:: 0.20

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if early_stopping is True.

        .. versionadded:: 0.20

    n_iter_no_change : int, default=5
        Number of iterations with no improvement to wait before early stopping.

        .. versionadded:: 0.20

    shuffle : bool, default=True
        Whether or not the training data should be shuffled after each epoch.

    verbose : int, default=0
        The verbosity level.

    loss : str, default="epsilon_insensitive"
        The loss function to be used:
        epsilon_insensitive: equivalent to PA-I in the reference paper.
        squared_epsilon_insensitive: equivalent to PA-II in the reference
        paper.

    epsilon : float, default=0.1
        If the difference between the current prediction and the correct label
        is below this threshold, the model is not updated.

    random_state : int, RandomState instance, default=None
        Used to shuffle the training data, when ``shuffle`` is set to
        ``True``. Pass an int for reproducible output across multiple
        function calls.
        See :term:`Glossary <random_state>`.

    warm_start : bool, default=False
        When set to True, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.
        See :term:`the Glossary <warm_start>`.

        Repeatedly calling fit or partial_fit when warm_start is True can
        result in a different solution than when calling fit a single time
        because of the way the data is shuffled.

    average : bool or int, default=False
        When set to True, computes the averaged SGD weights and stores the
        result in the ``coef_`` attribute. If set to an int greater than 1,
        averaging will begin once the total number of samples seen reaches
        average. So average=10 will begin averaging after seeing 10 samples.

        .. versionadded:: 0.19
           parameter *average* to use weights averaging in SGD.

    Attributes
    ----------
    coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,            n_features]
        Weights assigned to the features.

    intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
        Constants in decision function.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        The actual number of iterations to reach the stopping criterion.

    t_ : int
        Number of weight updates performed during training.
        Same as ``(n_iter_ * n_samples + 1)``.

    See Also
    --------
    SGDRegressor : Linear model fitted by minimizing a regularized
        empirical loss with SGD.

    References
    ----------
    Online Passive-Aggressive Algorithms
    <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
    K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006).

    Examples
    --------
    >>> from sklearn.linear_model import PassiveAggressiveRegressor
    >>> from sklearn.datasets import make_regression

    >>> X, y = make_regression(n_features=4, random_state=0)
    >>> regr = PassiveAggressiveRegressor(max_iter=100, random_state=0,
    ... tol=1e-3)
    >>> regr.fit(X, y)
    PassiveAggressiveRegressor(max_iter=100, random_state=0)
    >>> print(regr.coef_)
    [20.48736655 34.18818427 67.59122734 87.94731329]
    >>> print(regr.intercept_)
    [-0.02306214]
    >>> print(regr.predict([[0, 0, 0, 0]]))
    [-0.02306214]
    epsilon_insensitivesquared_epsilon_insensitiver   Nr   r   left)r   r   epsilonr   r   Tr   r   Fr   r   )r   r   r   r   r   r   r    r!   r"   r   r]   r$   r%   r'   c                    t                                          d d|d||||||||	|||           || _        |
| _        d S )Nr   r   )r)   l1_ratior]   r*   r   r   r   r   r   r    r!   r"   r$   r%   r'   r+   )r.   r   r   r   r   r   r   r    r!   r"   r   r]   r$   r%   r'   r/   s                  r0   r-   z#PassiveAggressiveRegressor.__init__  sg    $ 	') 3-%! 	 	
 	
 	
" 			r1   r2   c                     t          | d          s|                     d           | j        dk    rdnd}|                     ||d| j        d|dd	d	d	

  
        S )ay  Fit linear model with Passive Aggressive algorithm.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Subset of training data.

        y : numpy array of shape [n_samples]
            Subset of target values.

        Returns
        -------
        self : object
            Fitted estimator.
        coef_Tr6   rZ   r9   r:   r   r   N)r;   r   r   r<   r   r>   r?   r@   )rA   rB   r   rD   r   )r.   rE   rF   rG   s       r0   rH   z&PassiveAggressiveRegressor.partial_fit  s    " tW%% 	=&&t&<<<i#888UUe  f& ! 
 
 	
r1   c           
          |                                   | j        dk    rdnd}|                     ||d| j        d|||          S )aJ  Fit linear model with Passive Aggressive algorithm.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training data.

        y : numpy array of shape [n_samples]
            Target values.

        coef_init : array, shape = [n_features]
            The initial coefficients to warm-start the optimization.

        intercept_init : array, shape = [1]
            The initial intercept to warm-start the optimization.

        Returns
        -------
        self : object
            Fitted estimator.
        rZ   r9   r:   r   rJ   rK   rM   s         r0   rN   zPassiveAggressiveRegressor.fit  sa    . 	""$$$i#888UUeyyf&)  	
 	
 		
r1   rO   )rP   rQ   rR   rS   r   r   r   r   r   rT   rU   r	   r-   r   rH   rN   rV   rW   s   @r0   rY   rY   :  sR        N N`$

1$24QRSSThtQW5556HT1d6:::;	$ $ $D    "!$ $ $ $ $ $ $L \555
 
 65
B \555"
 "
 "
 65"
 "
 "
 "
 "
r1   rY   N)numbersr   baser   utils._param_validationr   r   _stochastic_gradientr	   r
   r   r   rY    r1   r0   <module>rh      s                : : : : : : : : V V V V V V V V V Vl
 l
 l
 l
 l
"3 l
 l
 l
^	C
 C
 C
 C
 C
!1 C
 C
 C
 C
 C
r1   