
    0Phb*                     B    d dl ZddlmZ ddlmZ  G d de          ZdS )    N   )"_BinaryClassifierCurveDisplayMixin   )	det_curvec                   t    e Zd ZdZddddZeddddddd            Zedddddd	            Zddd
dZdS )DetCurveDisplaya  DET curve visualization.

    It is recommend to use :func:`~sklearn.metrics.DetCurveDisplay.from_estimator`
    or :func:`~sklearn.metrics.DetCurveDisplay.from_predictions` to create a
    visualizer. All parameters are stored as attributes.

    Read more in the :ref:`User Guide <visualizations>`.

    .. versionadded:: 0.24

    Parameters
    ----------
    fpr : ndarray
        False positive rate.

    fnr : ndarray
        False negative rate.

    estimator_name : str, default=None
        Name of estimator. If None, the estimator name is not shown.

    pos_label : int, float, bool or str, default=None
        The label of the positive class.

    Attributes
    ----------
    line_ : matplotlib Artist
        DET Curve.

    ax_ : matplotlib Axes
        Axes with DET Curve.

    figure_ : matplotlib Figure
        Figure containing the curve.

    See Also
    --------
    det_curve : Compute error rates for different probability thresholds.
    DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
        some data.
    DetCurveDisplay.from_predictions : Plot DET curve given the true and
        predicted labels.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.metrics import det_curve, DetCurveDisplay
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.svm import SVC
    >>> X, y = make_classification(n_samples=1000, random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, test_size=0.4, random_state=0)
    >>> clf = SVC(random_state=0).fit(X_train, y_train)
    >>> y_pred = clf.decision_function(X_test)
    >>> fpr, fnr, _ = det_curve(y_test, y_pred)
    >>> display = DetCurveDisplay(
    ...     fpr=fpr, fnr=fnr, estimator_name="SVC"
    ... )
    >>> display.plot()
    <...>
    >>> plt.show()
    N)estimator_name	pos_labelc                >    || _         || _        || _        || _        d S Nfprfnrr	   r
   )selfr   r   r	   r
   s        _/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/sklearn/metrics/_plot/det_curve.py__init__zDetCurveDisplay.__init__K   s#    ,"    auto)sample_weightresponse_methodr
   nameaxc          
      h    |                      ||||||          \  }
}} | j        d||
||||d|	S )ai
  Plot DET curve given an estimator and data.

        Read more in the :ref:`User Guide <visualizations>`.

        .. versionadded:: 1.0

        Parameters
        ----------
        estimator : estimator instance
            Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
            in which the last estimator is a classifier.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input values.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        response_method : {'predict_proba', 'decision_function', 'auto'}                 default='auto'
            Specifies whether to use :term:`predict_proba` or
            :term:`decision_function` as the predicted target response. If set
            to 'auto', :term:`predict_proba` is tried first and if it does not
            exist :term:`decision_function` is tried next.

        pos_label : int, float, bool or str, default=None
            The label of the positive class. When `pos_label=None`, if `y_true`
            is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
            error will be raised.

        name : str, default=None
            Name of DET curve for labeling. If `None`, use the name of the
            estimator.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        **kwargs : dict
            Additional keywords arguments passed to matplotlib `plot` function.

        Returns
        -------
        display : :class:`~sklearn.metrics.DetCurveDisplay`
            Object that stores computed values.

        See Also
        --------
        det_curve : Compute error rates for different probability thresholds.
        DetCurveDisplay.from_predictions : Plot DET curve given the true and
            predicted labels.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import DetCurveDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.svm import SVC
        >>> X, y = make_classification(n_samples=1000, random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...     X, y, test_size=0.4, random_state=0)
        >>> clf = SVC(random_state=0).fit(X_train, y_train)
        >>> DetCurveDisplay.from_estimator(
        ...    clf, X_test, y_test)
        <...>
        >>> plt.show()
        )r   r
   r   )y_truey_predr   r   r   r
    )!_validate_and_get_response_valuesfrom_predictions)cls	estimatorXyr   r   r
   r   r   kwargsr   s              r   from_estimatorzDetCurveDisplay.from_estimatorQ   sx    j #&"G"G+ #H #
 #
	4 $s# 
'
 
 
 
 	
r   )r   r
   r   r   c                    |                      |||||          \  }}t          ||||          \  }	}
} | |	|
||          } |j        d||d|S )a+	  Plot the DET curve given the true and predicted labels.

        Read more in the :ref:`User Guide <visualizations>`.

        .. versionadded:: 1.0

        Parameters
        ----------
        y_true : array-like of shape (n_samples,)
            True labels.

        y_pred : array-like of shape (n_samples,)
            Target scores, can either be probability estimates of the positive
            class, confidence values, or non-thresholded measure of decisions
            (as returned by `decision_function` on some classifiers).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        pos_label : int, float, bool or str, default=None
            The label of the positive class. When `pos_label=None`, if `y_true`
            is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
            error will be raised.

        name : str, default=None
            Name of DET curve for labeling. If `None`, name will be set to
            `"Classifier"`.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        **kwargs : dict
            Additional keywords arguments passed to matplotlib `plot` function.

        Returns
        -------
        display : :class:`~sklearn.metrics.DetCurveDisplay`
            Object that stores computed values.

        See Also
        --------
        det_curve : Compute error rates for different probability thresholds.
        DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
            some data.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import DetCurveDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.svm import SVC
        >>> X, y = make_classification(n_samples=1000, random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...     X, y, test_size=0.4, random_state=0)
        >>> clf = SVC(random_state=0).fit(X_train, y_train)
        >>> y_pred = clf.decision_function(X_test)
        >>> DetCurveDisplay.from_predictions(
        ...    y_test, y_pred)
        <...>
        >>> plt.show()
        )r   r
   r   )r
   r   r   r   r   r   )!_validate_from_predictions_paramsr   plot)r   r   r   r   r
   r   r   r#   pos_label_validatedr   r   _vizs                r   r   z DetCurveDisplay.from_predictions   s    V %($I$IF-9SW %J %
 %
!T  '	
 
 
S! c)	
 
 
 sx32D33F333r   )r   c                   |                      ||          \  | _        | _        }|i nd|i} |j        di |  | j        j        t
          j        j                            | j	                  t
          j        j                            | j
                  fi |\  | _        | j        d| j         dnd}d|z   }d|z   }| j                            ||	           d|v r| j                            d
           g d}t
          j        j                            |          }	d |D             }
| j                            |	           | j                            |
           | j                            dd           | j                            |	           | j                            |
           | j                            dd           | S )ap  Plot visualization.

        Parameters
        ----------
        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        name : str, default=None
            Name of DET curve for labeling. If `None`, use `estimator_name` if
            it is not `None`, otherwise no labeling is shown.

        **kwargs : dict
            Additional keywords arguments passed to matplotlib `plot` function.

        Returns
        -------
        display : :class:`~sklearn.metrics.DetCurveDisplay`
            Object that stores computed values.
        r&   Nlabelz (Positive label: ) zFalse Positive RatezFalse Negative Rate)xlabelylabelzlower right)loc)	gMbP?g{Gz?g?g?g      ?g?gffffff?gGz?g+?c                     g | ]C}d |z                                   rd                    |          nd                    |          DS )d   z{:.0%}z{:.1%})
is_integerformat).0ss     r   
<listcomp>z(DetCurveDisplay.plot.<locals>.<listcomp>D  sZ     
 
 
 $'7"6"6"8"8PHOOAhooa>P>P
 
 
r   r   r   )_validate_plot_paramsax_figure_updater(   spstatsnormppfr   r   line_r
   setlegend
set_xticksset_xticklabelsset_xlim
set_yticksset_yticklabelsset_ylim)r   r   r   r#   line_kwargsinfo_pos_labelr0   r1   tickstick_locationstick_labelss              r   r(   zDetCurveDisplay.plot  s   * (,'A'ARd'A'S'S$$, Lbbwo$$V$$$%HMdh''HMdh''
 
 
 
 7;n6P22222VX 	 '7&7F6222k!!HOOO...GGG**511
 

 
 
 	N+++  ---"a   N+++  ---"a   r   r   )	__name__
__module____qualname____doc__r   classmethodr$   r   r(   r   r   r   r   r   
   s        > >@ 484 # # # # #  e
 e
 e
 e
 [e
N  \4 \4 \4 \4 [\4|7D 7 7 7 7 7 7 7r   r   )scipyr?   utils._plottingr   _rankingr   r   r   r   r   <module>rY      sv        A A A A A A            E E E E E8 E E E E Er   