
    0Ph*B                         d dl Z d dlmZ d dlZddlmZmZmZ ddl	m
Z
 ddlmZmZmZ ddlmZ ddlmZ dd	lmZmZmZmZmZ d
dlmZ  G d dee          ZdS )    N)Integral   )BaseEstimatorTransformerMixin_fit_context)resample)IntervalOptions
StrOptions)"_deprecate_Xt_in_inverse_transform_weighted_percentile)_check_feature_names_in_check_sample_weightcheck_arraycheck_is_fittedvalidate_data   )OneHotEncoderc            
       4   e Zd ZU dZ eeddd          dg eh d          g eh d          g eee	j
        e	j        h          dg eed	dd          dgd
gdZeed<   	 ddddddddZ ed          dd            Zd Zd ZddddZddZdS )KBinsDiscretizera  
    Bin continuous data into intervals.

    Read more in the :ref:`User Guide <preprocessing_discretization>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    n_bins : int or array-like of shape (n_features,), default=5
        The number of bins to produce. Raises ValueError if ``n_bins < 2``.

    encode : {'onehot', 'onehot-dense', 'ordinal'}, default='onehot'
        Method used to encode the transformed result.

        - 'onehot': Encode the transformed result with one-hot encoding
          and return a sparse matrix. Ignored features are always
          stacked to the right.
        - 'onehot-dense': Encode the transformed result with one-hot encoding
          and return a dense array. Ignored features are always
          stacked to the right.
        - 'ordinal': Return the bin identifier encoded as an integer value.

    strategy : {'uniform', 'quantile', 'kmeans'}, default='quantile'
        Strategy used to define the widths of the bins.

        - 'uniform': All bins in each feature have identical widths.
        - 'quantile': All bins in each feature have the same number of points.
        - 'kmeans': Values in each bin have the same nearest center of a 1D
          k-means cluster.

        For an example of the different strategies see:
        :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_strategies.py`.

    dtype : {np.float32, np.float64}, default=None
        The desired data-type for the output. If None, output dtype is
        consistent with input dtype. Only np.float32 and np.float64 are
        supported.

        .. versionadded:: 0.24

    subsample : int or None, default=200_000
        Maximum number of samples, used to fit the model, for computational
        efficiency.
        `subsample=None` means that all the training samples are used when
        computing the quantiles that determine the binning thresholds.
        Since quantile computation relies on sorting each column of `X` and
        that sorting has an `n log(n)` time complexity,
        it is recommended to use subsampling on datasets with a
        very large number of samples.

        .. versionchanged:: 1.3
            The default value of `subsample` changed from `None` to `200_000` when
            `strategy="quantile"`.

        .. versionchanged:: 1.5
            The default value of `subsample` changed from `None` to `200_000` when
            `strategy="uniform"` or `strategy="kmeans"`.

    random_state : int, RandomState instance or None, default=None
        Determines random number generation for subsampling.
        Pass an int for reproducible results across multiple function calls.
        See the `subsample` parameter for more details.
        See :term:`Glossary <random_state>`.

        .. versionadded:: 1.1

    Attributes
    ----------
    bin_edges_ : ndarray of ndarray of shape (n_features,)
        The edges of each bin. Contain arrays of varying shapes ``(n_bins_, )``
        Ignored features will have empty arrays.

    n_bins_ : ndarray of shape (n_features,), dtype=np.int64
        Number of bins per feature. Bins whose width are too small
        (i.e., <= 1e-8) are removed with a warning.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    Binarizer : Class used to bin values as ``0`` or
        ``1`` based on a parameter ``threshold``.

    Notes
    -----

    For a visualization of discretization on different datasets refer to
    :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_classification.py`.
    On the effect of discretization on linear models see:
    :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization.py`.

    In bin edges for feature ``i``, the first and last values are used only for
    ``inverse_transform``. During transform, bin edges are extended to::

      np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf])

    You can combine ``KBinsDiscretizer`` with
    :class:`~sklearn.compose.ColumnTransformer` if you only want to preprocess
    part of the features.

    ``KBinsDiscretizer`` might produce constant features (e.g., when
    ``encode = 'onehot'`` and certain bins do not contain any data).
    These features can be removed with feature selection algorithms
    (e.g., :class:`~sklearn.feature_selection.VarianceThreshold`).

    Examples
    --------
    >>> from sklearn.preprocessing import KBinsDiscretizer
    >>> X = [[-2, 1, -4,   -1],
    ...      [-1, 2, -3, -0.5],
    ...      [ 0, 3, -2,  0.5],
    ...      [ 1, 4, -1,    2]]
    >>> est = KBinsDiscretizer(
    ...     n_bins=3, encode='ordinal', strategy='uniform'
    ... )
    >>> est.fit(X)
    KBinsDiscretizer(...)
    >>> Xt = est.transform(X)
    >>> Xt  # doctest: +SKIP
    array([[ 0., 0., 0., 0.],
           [ 1., 1., 1., 0.],
           [ 2., 2., 2., 1.],
           [ 2., 2., 2., 2.]])

    Sometimes it may be useful to convert the data back into the original
    feature space. The ``inverse_transform`` function converts the binned
    data into the original feature space. Each value will be equal to the mean
    of the two bin edges.

    >>> est.bin_edges_[0]
    array([-2., -1.,  0.,  1.])
    >>> est.inverse_transform(Xt)
    array([[-1.5,  1.5, -3.5, -0.5],
           [-0.5,  2.5, -2.5, -0.5],
           [ 0.5,  3.5, -1.5,  0.5],
           [ 0.5,  3.5, -1.5,  1.5]])
    r   Nleft)closedz
array-like>   onehot-denseonehotordinal>   kmeansuniformquantiler   random_staten_binsencodestrategydtype	subsampler    _parameter_constraints   r   r   i@ )r#   r$   r%   r&   r    c                Z    || _         || _        || _        || _        || _        || _        d S Nr!   )selfr"   r#   r$   r%   r&   r    s          e/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/sklearn/preprocessing/_discretization.py__init__zKBinsDiscretizer.__init__   s5      
"(    T)prefer_skip_nested_validationc                    t          | |d          }| j        t          j        t          j        fv r| j        }n|j        }|j        \  }}#| j        dk    rt          d| j        d          | j        (|| j        k    rt          |d| j        | j
                  }|j        d	         }|                     |          }t          ||j                  t          j        |t                    }t          |          D ]}	|dd|	f                                                                         }}
|
|k    rKt%          j        d
|	z             d	||	<   t          j        t          j         t          j        g          ||	<   | j        dk    r$t          j        |
|||	         d	z             ||	<   nl| j        dk    r~t          j        dd||	         d	z             },t          j        t          j        |                    ||	<   nt          j        fd|D             t          j                  ||	<   n| j        dk    rddlm} t          j        |
|||	         d	z             }|d	d         |dd         z   dddf         dz  } |||	         |d	          }|                    dddf                   j        dddf         }|                                 |d	d         |dd         z   dz  ||	<   t          j        |
||	         |f         ||	<   | j        dv rt          j        ||	         t          j                  dk    }||	         |         ||	<   tA          ||	                   d	z
  ||	         k    r2t%          j        d|	z             tA          ||	                   d	z
  ||	<   || _!        || _"        d| j#        v rotI          d | j"        D             | j#        dk    |          | _%        | j%                            t          j        d	tA          | j"                  f                     | S )as  
        Fit the estimator.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to be discretized.

        y : None
            Ignored. This parameter exists only for compatibility with
            :class:`~sklearn.pipeline.Pipeline`.

        sample_weight : ndarray of shape (n_samples,)
            Contains weight values to be associated with each sample.
            Cannot be used when `strategy` is set to `"uniform"`.

            .. versionadded:: 1.3

        Returns
        -------
        self : object
            Returns the instance itself.
        numericr%   Nr   zY`sample_weight` was provided but it cannot be used with strategy='uniform'. Got strategy=z	 instead.F)replace	n_samplesr    r   z3Feature %d is constant and will be replaced with 0.r   r   d   c                 2    g | ]}t          |          S  r   ).0qcolumnsample_weights     r,   
<listcomp>z(KBinsDiscretizer.fit.<locals>.<listcomp>  s5        ! 1JJ  r.   r   r   )KMeans      ?)
n_clustersinitn_init)r;   )r   r   )to_beging:0yE>zqBins whose width are too small (i.e., <= 1e-8) in feature %d are removed. Consider decreasing the number of bins.r   c                 6    g | ]}t          j        |          S r7   )nparanger8   is     r,   r<   z(KBinsDiscretizer.fit.<locals>.<listcomp>>  s     ???QBIaLL???r.   )
categoriessparse_outputr%   )&r   r%   rE   float64float32shaper$   
ValueErrorr&   r   r    _validate_n_binsr   zerosobjectrangeminmaxwarningswarnarrayinflinspaceasarray
percentileclusterr=   fitcluster_centers_sortr_ediff1dlen
bin_edges_n_bins_r#   r   _encoder)r+   Xyr;   output_dtyper4   
n_featuresr"   	bin_edgesjjcol_mincol_max	quantilesr=   uniform_edgesrA   kmcentersmaskr:   s      `               @r,   r]   zKBinsDiscretizer.fit   s   2 $333:"*bj111:LL7L !	:$))C)C.=. . .   >%)dn*D*D.!.	  A WQZ
&&z22$0QQQMHZv666	
## 6	8 6	8Bqqq"uXF%zz||VZZ\\WG'!!IBN   r
 "26'26): ; ;	"}	)) "GWfRj1n M M	"*,,K3r
Q??	 ($&Jr}VY/O/O$P$PIbMM$&J    %.   !j% % %IbMM (**,,,,,, !#GWfRj1n M M%abb)M#2#,>>4H3N VvbzQGGG&&111d7O= !  "111a4) !(wss|!;s B	" "gy}g&E F	" } 666z)B-"&AAADH )"d 3	"y}%%)VBZ77M9;=>  
 "%Yr]!3!3a!7F2J#t{"")??$,???"kX5"  DM Mbh3t|+<+<'=>>???r.   c                    | j         }t          |t                    rt          j        ||t
                    S t          |t
          dd          }|j        dk    s|j        d         |k    rt          d          |dk     ||k    z  }t          j
        |          d         }|j        d         dk    rLd	                    d
 |D                       }t          d                    t          j        |                    |S )z0Returns n_bins_, the number of bins per feature.r2   TF)r%   copy	ensure_2dr   r   z8n_bins must be a scalar or array of shape (n_features,).r   z, c              3   4   K   | ]}t          |          V  d S r*   )strrG   s     r,   	<genexpr>z4KBinsDiscretizer._validate_n_bins.<locals>.<genexpr>W  s(      BB1ABBBBBBr.   zk{} received an invalid number of bins at indices {}. Number of bins must be at least 2, and must be an int.)r"   
isinstancer   rE   fullintr   ndimrM   rN   wherejoinformatr   __name__)r+   ri   	orig_binsr"   bad_nbins_valueviolating_indicesindicess          r,   rO   z!KBinsDiscretizer._validate_n_binsH  s   K	i** 	=7:y<<<<YcNNN;??fl1o;;WXXX!A:&I*=>H_55a8"1%))iiBB0ABBBBBG::@&$-w; ;   r.   c                 (   t          |            | j        t          j        t          j        fn| j        }t          | |d|d          }| j        }t          |j        d                   D ]8}t          j	        ||         dd         |dd|f         d          |dd|f<   9| j
        d	k    r|S d}d
| j
        v r| j        j        }|j        | j        _        	 | j                            |          }|| j        _        n# || j        _        w xY w|S )a  
        Discretize the data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to be discretized.

        Returns
        -------
        Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64}
            Data in the binned space. Will be a sparse matrix if
            `self.encode='onehot'` and ndarray otherwise.
        NTF)rt   r%   resetr   r>   right)sider   r   )r   r%   rE   rK   rL   r   rc   rR   rM   searchsortedr#   re   	transform)r+   rf   r%   Xtrj   rk   
dtype_initXt_encs           r,   r   zKBinsDiscretizer.transforma  s)    	 -1J,>RZ((DJ4U%HHHO	$$ 	V 	VB	"ad(;R2YWUUUBqqq"uII;)##I
t{"",J"$(DM	-],,R00F #-DM*DM,,,,s   D D)r   c                V   t          ||          }t          |            d| j        v r| j                            |          }t          |dt          j        t          j        f          }| j	        j
        d         }|j
        d         |k    r.t          d                    ||j
        d                             t          |          D ]]}| j        |         }|dd         |dd         z   d	z  }||dd|f                             t          j                           |dd|f<   ^|S )
a  
        Transform discretized data back to original feature space.

        Note that this function does not regenerate the original data
        due to discretization rounding.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Transformed data in the binned space.

        Xt : array-like of shape (n_samples, n_features)
            Transformed data in the binned space.

            .. deprecated:: 1.5
                `Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead.

        Returns
        -------
        Xinv : ndarray, dtype={np.float32, np.float64}
            Data in the original feature space.
        r   T)rt   r%   r   r   z8Incorrect number of features. Expecting {}, received {}.Nr>   r?   )r   r   r#   re   inverse_transformr   rE   rK   rL   rd   rM   rN   r   rR   rc   astypeint64)r+   rf   r   Xinvri   rk   rj   bin_centerss           r,   r   z"KBinsDiscretizer.inverse_transform  s/   . /q"55t{""//22A14
BJ/GHHH\'*
:a=J&&JQQ
1    
## 	F 	FB+I$QRR=9SbS>9S@K%tAAArE{&:&:28&D&DEDBKKr.   c                     t          | d           t          | |          }t          | d          r| j                            |          S |S )a  Get output feature names.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

            - If `input_features` is `None`, then `feature_names_in_` is
              used as feature names in. If `feature_names_in_` is not defined,
              then the following input feature names are generated:
              `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
            - If `input_features` is an array-like, then `input_features` must
              match `feature_names_in_` if `feature_names_in_` is defined.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        n_features_in_re   )r   r   hasattrre   get_feature_names_out)r+   input_featuress     r,   r   z&KBinsDiscretizer.get_feature_names_out  sU    ( 	.///0~FF4$$ 	G=66~FFF r.   )r(   )NNr*   )r   
__module____qualname____doc__r	   r   r   r
   typerE   rK   rL   r'   dict__annotations__r-   r   r]   rO   r   r   r   r7   r.   r,   r   r      s        R Rj 8Haf===|L:CCCDDEZ A A ABBC'$RZ 8994@hxD@@@$G'($ $D    ) ) ) ) ) )" \555} } } 65}~  2% % %N,d , , , , ,\     r.   r   )rU   numbersr   numpyrE   baser   r   r   utilsr   utils._param_validationr	   r
   r   utils.deprecationr   utils.statsr   utils.validationr   r   r   r   r   	_encodersr   r   r7   r.   r,   <module>r      s;  
            @ @ @ @ @ @ @ @ @ @       C C C C C C C C C C B B B B B B . . . . . .              % $ $ $ $ $w w w w w' w w w w wr.   