
    0Phz                        d dl Z d dlZd dlZd dlmZ d dlmZ d dlZd dl	m
Z ddlmZmZmZ ddlmZ ddlmZmZmZ ddlmZmZ dd	lmZmZ dd
lmZmZ ddlm Z  ddl!m"Z"m#Z#m$Z$ g dZ% G d deed          Z& G d deed          Z' eddgdg eeddd          g eeddd          gdgdd          d dddd            Z(d Z)d  Z* G d! d"eed          Z+dS )#    N)defaultdict)Integral   )BaseEstimatorTransformerMixin_fit_context)column_or_1d)
_setdiff1ddeviceget_namespace)_encode_unique)Intervalvalidate_params)type_of_targetunique_labels)min_max_axis)_num_samplescheck_arraycheck_is_fitted)label_binarizeLabelBinarizerLabelEncoderMultiLabelBinarizerc                   :     e Zd ZdZd Zd Zd Zd Z fdZ xZ	S )r   a  Encode target labels with value between 0 and n_classes-1.

    This transformer should be used to encode target values, *i.e.* `y`, and
    not the input `X`.

    Read more in the :ref:`User Guide <preprocessing_targets>`.

    .. versionadded:: 0.12

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        Holds the label for each class.

    See Also
    --------
    OrdinalEncoder : Encode categorical features using an ordinal encoding
        scheme.
    OneHotEncoder : Encode categorical features as a one-hot numeric array.

    Examples
    --------
    `LabelEncoder` can be used to normalize labels.

    >>> from sklearn.preprocessing import LabelEncoder
    >>> le = LabelEncoder()
    >>> le.fit([1, 2, 2, 6])
    LabelEncoder()
    >>> le.classes_
    array([1, 2, 6])
    >>> le.transform([1, 1, 2, 6])
    array([0, 0, 1, 2]...)
    >>> le.inverse_transform([0, 0, 1, 2])
    array([1, 1, 2, 6])

    It can also be used to transform non-numerical labels (as long as they are
    hashable and comparable) to numerical labels.

    >>> le = LabelEncoder()
    >>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
    LabelEncoder()
    >>> list(le.classes_)
    [np.str_('amsterdam'), np.str_('paris'), np.str_('tokyo')]
    >>> le.transform(["tokyo", "tokyo", "paris"])
    array([2, 2, 1]...)
    >>> list(le.inverse_transform([2, 2, 1]))
    [np.str_('tokyo'), np.str_('tokyo'), np.str_('paris')]
    c                 P    t          |d          }t          |          | _        | S )zFit label encoder.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        self : returns an instance of self.
            Fitted label encoder.
        Twarnr	   r   classes_selfys     \/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/sklearn/preprocessing/_label.pyfitzLabelEncoder.fitP   s(     &&&

    c                 Z    t          |d          }t          |d          \  | _        }|S )a  Fit label encoder and return encoded labels.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y : array-like of shape (n_samples,)
            Encoded labels.
        Tr   return_inverser   r!   s     r$   fit_transformzLabelEncoder.fit_transforma   s4     &&&"1T:::qr&   c                     t          |            t          |          \  }}t          || j        j        d          }t          |          dk    r|                    g           S t          || j                  S )a  Transform labels to normalized encoding.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y : array-like of shape (n_samples,)
            Labels as normalized encodings.
        T)dtyper   r   )uniques)r   r   r	   r    r,   r   asarrayr   )r"   r#   xp_s       r$   	transformzLabelEncoder.transformr   sr     	a  A$-"5DAAA??a::b>>!q$-0000r&   c           	         t          |            t          |          \  }}t          |d          }t          |          dk    r|                    g           S t          ||                    | j        j        d         t          |                    |          }|j        d         rt          dt          |          z            |                    |          }|                    | j        |d          S )a  Transform labels back to original encoding.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            Original encoding.
        Tr   r   )r   )ar1ar2r/   z'y contains previously unseen labels: %saxis)r   r   r	   r   r.   r
   aranger    shaper   
ValueErrorstrtake)r"   r#   r/   r0   diffs        r$   inverse_transformzLabelEncoder.inverse_transform   s     	a  A&&&??a::b>>!		$--a0	CC
 
 

 :a= 	TFTRSSSJJqMMwwt}aaw000r&   c                     t                                                      }d|_        d|j        _        d|j        _        |S )NTF)super__sklearn_tags__array_api_support
input_tagstwo_d_arraytarget_tagsone_d_labelsr"   tags	__class__s     r$   r@   zLabelEncoder.__sklearn_tags__   s:    ww''))!%&+#(,%r&   )
__name__
__module____qualname____doc__r%   r*   r1   r=   r@   __classcell__rH   s   @r$   r   r      s        / /b  "  "1 1 1,1 1 1<        r&   r   )auto_wrap_output_keysc                        e Zd ZU dZegegdgdZeed<   dddddZ e	d	
          d             Z
d Zd ZddZ fdZ xZS )r   a
  Binarize labels in a one-vs-all fashion.

    Several regression and binary classification algorithms are
    available in scikit-learn. A simple way to extend these algorithms
    to the multi-class classification case is to use the so-called
    one-vs-all scheme.

    At learning time, this simply consists in learning one regressor
    or binary classifier per class. In doing so, one needs to convert
    multi-class labels to binary labels (belong or does not belong
    to the class). `LabelBinarizer` makes this process easy with the
    transform method.

    At prediction time, one assigns the class for which the corresponding
    model gave the greatest confidence. `LabelBinarizer` makes this easy
    with the :meth:`inverse_transform` method.

    Read more in the :ref:`User Guide <preprocessing_targets>`.

    Parameters
    ----------
    neg_label : int, default=0
        Value with which negative labels must be encoded.

    pos_label : int, default=1
        Value with which positive labels must be encoded.

    sparse_output : bool, default=False
        True if the returned array from transform is desired to be in sparse
        CSR format.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        Holds the label for each class.

    y_type_ : str
        Represents the type of the target data as evaluated by
        :func:`~sklearn.utils.multiclass.type_of_target`. Possible type are
        'continuous', 'continuous-multioutput', 'binary', 'multiclass',
        'multiclass-multioutput', 'multilabel-indicator', and 'unknown'.

    sparse_input_ : bool
        `True` if the input data to transform is given as a sparse matrix,
         `False` otherwise.

    See Also
    --------
    label_binarize : Function to perform the transform operation of
        LabelBinarizer with fixed classes.
    OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
        scheme.

    Examples
    --------
    >>> from sklearn.preprocessing import LabelBinarizer
    >>> lb = LabelBinarizer()
    >>> lb.fit([1, 2, 6, 4, 2])
    LabelBinarizer()
    >>> lb.classes_
    array([1, 2, 4, 6])
    >>> lb.transform([1, 6])
    array([[1, 0, 0, 0],
           [0, 0, 0, 1]])

    Binary targets transform to a column vector

    >>> lb = LabelBinarizer()
    >>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
    array([[1],
           [0],
           [0],
           [1]])

    Passing a 2D matrix for multilabel classification

    >>> import numpy as np
    >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
    LabelBinarizer()
    >>> lb.classes_
    array([0, 1, 2])
    >>> lb.transform([0, 1, 2, 1])
    array([[1, 0, 0],
           [0, 1, 0],
           [0, 0, 1],
           [0, 1, 0]])
    boolean	neg_label	pos_labelsparse_output_parameter_constraintsr      Fc                0    || _         || _        || _        d S NrR   )r"   rS   rT   rU   s       r$   __init__zLabelBinarizer.__init__  s    ""*r&   Tprefer_skip_nested_validationc                    | j         | j        k    r t          d| j          d| j         d          | j        r5| j        dk    s| j         dk    rt          d| j         d| j                    t	          |d          | _        d	| j        v rt          d
          t          |          dk    rt          d|z            t          j        |          | _	        t          |          | _        | S )aa  Fit label binarizer.

        Parameters
        ----------
        y : ndarray of shape (n_samples,) or (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification.

        Returns
        -------
        self : object
            Returns the instance itself.
        z
neg_label=z& must be strictly less than pos_label=.r   z`Sparse binarization is only supported with non zero pos_label and zero neg_label, got pos_label=z and neg_label=r#   )
input_namemultioutput@Multioutput target data is not supported with label binarizationy has 0 samples: %r)rS   rT   r9   rU   r   y_type_r   spissparsesparse_input_r   r    r!   s     r$   r%   zLabelBinarizer.fit  s.    >T^++/T^ / /!^/ / /  
  	4>Q#6#6$.A:M:MM!^M M<@NM M   &aC888DL((R   ??a2Q6777[^^%a((r&   c                 R    |                      |                              |          S )a  Fit label binarizer/transform multi-class labels to binary labels.

        The output of transform is sometimes referred to as
        the 1-of-K coding scheme.

        Parameters
        ----------
        y : {ndarray, sparse matrix} of shape (n_samples,) or                 (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification. Sparse matrix can be
            CSR, CSC, COO, DOK, or LIL.

        Returns
        -------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Shape will be (n_samples, 1) for binary problems. Sparse matrix
            will be of CSR format.
        )r%   r1   r!   s     r$   r*   zLabelBinarizer.fit_transform;  s"    ( xx{{$$Q'''r&   c                 
   t          |            t          |                              d          }|r)| j                            d          st	          d          t          || j        | j        | j        | j	                  S )a  Transform multi-class labels to binary labels.

        The output of transform is sometimes referred to by some authors as
        the 1-of-K coding scheme.

        Parameters
        ----------
        y : {array, sparse matrix} of shape (n_samples,) or                 (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification. Sparse matrix can be
            CSR, CSC, COO, DOK, or LIL.

        Returns
        -------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Shape will be (n_samples, 1) for binary problems. Sparse matrix
            will be of CSR format.
        
multilabelz0The object was not fitted with multilabel input.)classesrT   rS   rU   )
r   r   
startswithrc   r9   r   r    rT   rS   rU   )r"   r#   y_is_multilabels      r$   r1   zLabelBinarizer.transformQ  s    ( 	(++66|DD 	Q4<#:#:<#H#H 	QOPPPMnn,
 
 
 	
r&   Nc                 N   t          |            || j        | j        z   dz  }| j        dk    rt	          || j                  }nt          || j        | j        |          }| j        rt          j	        |          }n(t          j
        |          r|                                }|S )a  Transform binary labels back to multi-class labels.

        Parameters
        ----------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Target values. All sparse matrices are converted to CSR before
            inverse transformation.

        threshold : float, default=None
            Threshold used in the binary and multi-label cases.

            Use 0 when ``Y`` contains the output of :term:`decision_function`
            (classifier).
            Use 0.5 when ``Y`` contains the output of :term:`predict_proba`.

            If None, the threshold is assumed to be half way between
            neg_label and pos_label.

        Returns
        -------
        y : {ndarray, sparse matrix} of shape (n_samples,)
            Target values. Sparse matrix will be of CSR format.

        Notes
        -----
        In the case when the binary labels are fractional
        (probabilistic), :meth:`inverse_transform` chooses the class with the
        greatest value. Typically, this allows to use the output of a
        linear model's :term:`decision_function` method directly as the input
        of :meth:`inverse_transform`.
        Ng       @
multiclass)r   rT   rS   rc   _inverse_binarize_multiclassr    _inverse_binarize_thresholdingrf   rd   
csr_matrixre   toarray)r"   Y	thresholdy_invs       r$   r=   z LabelBinarizer.inverse_transforms  s    @ 	$.8C?I<<''0DMBBEE24<	 E  	$M%((EE[ 	$MMOOEr&   c                 x    t                                                      }d|j        _        d|j        _        |S NFT)r?   r@   rB   rC   rD   rE   rF   s     r$   r@   zLabelBinarizer.__sklearn_tags__  2    ww''))&+#(,%r&   rY   )rI   rJ   rK   rL   r   rV   dict__annotations__rZ   r   r%   r*   r1   r=   r@   rM   rN   s   @r$   r   r      s         V Vr ZZ#$ $D    %&% + + + + +
 \555& & 65&P( ( (, 
  
  
D1 1 1 1f        r&   r   
array-likezsparse matrixneither)closedrQ   )r#   rj   rS   rT   rU   Tr[   rW   FrR   c                x   t          | t                    st          | dddd          } n%t          |           dk    rt	          d| z            ||k    r#t	          d                    ||                    |r/|dk    s|dk    r#t	          d	                    ||                    |dk    }|r| }t          |           }d
|v rt	          d          |dk    rt	          d          t          j        |           r| j	        d         nt          |           }t          |          }t          j        |          }|dk    rk|dk    rP|rt          j        |dft                    S t          j        t          |           dft                    }	|	|z  }	|	S t          |          dk    rd}t          j        |          }
|dk    rmt#          | d          r| j	        d         nt          | d                   }|j        |k    r0t	          d                    |t'          |                               |dv rt)          |           } t          j        | |          }| |         }t          j        |
|          }t          j        dt          j        |          f          }t          j        |          }|                    |           t          j        |||f||f          }	nh|dk    rPt          j        |           }	|dk    r5t          j        |	j                  }|                    |           ||	_        nt	          d|z            |sK|	                                }	|	                    t          d          }	|dk    r	||	|	dk    <   |r	d|	|	|k    <   n&|	j                            t          d          |	_        t          j        ||
k              r!t          j        |
|          }|	dd|f         }	|dk    r7|r|	                    d          }	n|	dddf                              d          }	|	S )a  Binarize labels in a one-vs-all fashion.

    Several regression and binary classification algorithms are
    available in scikit-learn. A simple way to extend these algorithms
    to the multi-class classification case is to use the so-called
    one-vs-all scheme.

    This function makes it possible to compute this transformation for a
    fixed set of class labels known ahead of time.

    Parameters
    ----------
    y : array-like or sparse matrix
        Sequence of integer labels or multilabel data to encode.

    classes : array-like of shape (n_classes,)
        Uniquely holds the label for each class.

    neg_label : int, default=0
        Value with which negative labels must be encoded.

    pos_label : int, default=1
        Value with which positive labels must be encoded.

    sparse_output : bool, default=False,
        Set to true if output binary array is desired in CSR sparse format.

    Returns
    -------
    Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
        Shape will be (n_samples, 1) for binary problems. Sparse matrix will
        be of CSR format.

    See Also
    --------
    LabelBinarizer : Class used to wrap the functionality of label_binarize and
        allow for fitting to classes independently of the transform operation.

    Examples
    --------
    >>> from sklearn.preprocessing import label_binarize
    >>> label_binarize([1, 6], classes=[1, 2, 4, 6])
    array([[1, 0, 0, 0],
           [0, 0, 0, 1]])

    The class ordering is preserved:

    >>> label_binarize([1, 6], classes=[1, 6, 4, 2])
    array([[1, 0, 0, 0],
           [0, 1, 0, 0]])

    Binary targets transform to a column vector

    >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
    array([[1],
           [0],
           [0],
           [1]])
    r#   csrFN)r_   accept_sparse	ensure_2dr,   r   rb   z7neg_label={0} must be strictly less than pos_label={1}.zuSparse binarization is only supported with non zero pos_label and zero neg_label, got pos_label={0} and neg_label={1}r`   ra   unknownz$The type of target data is not knownbinaryrW   r,      rn   multilabel-indicatorr8   z:classes {0} mismatch with the labels {1} found in the data)r   rn   r8   z7%s target data is not supported with label binarization)copy)r   rW   )!
isinstancelistr   r   r9   formatr   rd   re   r8   lennpr.   rq   intzerossorthasattrsizer   r	   isinsearchsortedhstackcumsum
empty_likefilldatarr   astypeanygetcolreshape)r#   rj   rS   rT   rU   
pos_switchy_type	n_samples	n_classesrs   sorted_classy_n_classesy_in_classesy_seenindicesindptrr   s                    r$   r   r     su   L a 8 #Ue4
 
 
 ??a2Q6777IELL9 
 
 	
  
)q..INN vi++	
 
 	
 aJ J	AFN
 
 	
 ?@@@ k!nn8

#a&&IGIj!!G>> }i^3????Hc!ffa[444Y\\Q!F77##L'''$+Aw$7$7FagajjS1YY<;&&LSS]1--    )))OO wq'**</,77Ary66788}W%%		)M4&1)Y9OPPP	)	)	)M!>>=((DIIi   AFEN
 
 	
  
0IIKKHHSuH%%>>!Aa1fI 	" !Aa9ns// 
vg%&& /,88aaajM 	*AA!!!R%  ))AHr&   c                 0   t          j        |          }t          j        |           r|                                 } | j        \  }}t          j        |          }t          | d          d         }t          j        | j	                  }t          j
        ||          }t          j        || j        k              }|d         dk    r(t          j        |t          | j                  g          }t          j        || j	        dd                   }	t          j        | j        dg          }
|
||	                  }d|t          j        |dk              d         <   t          j        |          |dk    |                                dk    z           }|D ]N}| j        | j	        |         | j	        |dz                     }|t          j        ||                   d         ||<   O||         S |                    |                     d          d          S )z}Inverse label binarization transformation for multiclass.

    Multiclass uses the maximal score instead of a threshold.
    rW   r   r   Nr5   clip)mode)r   r.   rd   re   tocsrr8   r7   r   r<   r   repeatflatnonzeror   appendr   r   r   whereravel	setdiff1dr;   argmax)r#   rj   r   	n_outputsoutputsrow_maxrow_nnzy_data_repeated_maxy_i_all_argmaxindex_first_argmax	y_ind_ext
y_i_argmaxsamplesiinds                  r$   ro   ro   b  s   
 j!!G	{1~~ !; GGII w	9)I&&q!$$Q''!(## i99(;qv(EFF 2;!Y~AF}EEN  _^QXcrc]KKIai!--	~.@AB
01
28GqL))!,- )I&&!18L'MN 	C 	CA)AHQK!(1q5/9:C#BL#$>$>?BJqMMz""||AHH!H,,6|:::r&   c                 d   |dk    rC| j         dk    r8| j        d         dk    r't          d                    | j                            |dk    r-| j        d         t	          |          k    rt          d          t          j        |          }t          j        |           r|dk    r[| j        dvr| 	                                } t          j
        | j        |k    t                    | _        |                                  nQt          j
        |                                 |k    t                    } nt          j
        | |k    t                    } |dk    rt          j        |           r|                                 } | j         dk    r#| j        d         dk    r|| d	d	df                  S t	          |          dk    r(t          j        |d         t	          |                     S ||                                          S |d
k    r| S t          d                    |                    )z=Inverse label binarization transformation using thresholding.r   r   rW   z'output_type='binary', but y.shape = {0}zAThe number of class is not equal to the number of dimension of y.r   )r   cscr   Nr   z{0} format is not supported)ndimr8   r9   r   r   r   r.   rd   re   r   arrayr   r   eliminate_zerosrr   r   r   )r#   output_typerj   rt   s       r$   rp   rp     s    h16Q;;171:>>BII!'RRSSSh171:W#=#=O
 
 	
 j!!G 
{1~~ 	/q==x~--GGIIXafy0<<<AFy0<<<AAHQ]#... h;q>> 			A6Q;;171:??1QQQT7##7||q  ySVV444qwwyy))	.	.	. 6==kJJKKKr&   c                        e Zd ZU dZddgdgdZeed<   ddddZ ed	
          d             Z	 ed	
          d             Z
d Zd Zd Zd Z fdZ xZS )r   a   Transform between iterable of iterables and a multilabel format.

    Although a list of sets or tuples is a very intuitive format for multilabel
    data, it is unwieldy to process. This transformer converts between this
    intuitive format and the supported multilabel format: a (samples x classes)
    binary matrix indicating the presence of a class label.

    Parameters
    ----------
    classes : array-like of shape (n_classes,), default=None
        Indicates an ordering for the class labels.
        All entries should be unique (cannot contain duplicate classes).

    sparse_output : bool, default=False
        Set to True if output binary array is desired in CSR sparse format.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        A copy of the `classes` parameter when provided.
        Otherwise it corresponds to the sorted set of classes found
        when fitting.

    See Also
    --------
    OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
        scheme.

    Examples
    --------
    >>> from sklearn.preprocessing import MultiLabelBinarizer
    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit_transform([(1, 2), (3,)])
    array([[1, 1, 0],
           [0, 0, 1]])
    >>> mlb.classes_
    array([1, 2, 3])

    >>> mlb.fit_transform([{'sci-fi', 'thriller'}, {'comedy'}])
    array([[0, 1, 1],
           [1, 0, 0]])
    >>> list(mlb.classes_)
    ['comedy', 'sci-fi', 'thriller']

    A common mistake is to pass in a list, which leads to the following issue:

    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit(['sci-fi', 'thriller', 'comedy'])
    MultiLabelBinarizer()
    >>> mlb.classes_
    array(['-', 'c', 'd', 'e', 'f', 'h', 'i', 'l', 'm', 'o', 'r', 's', 't',
        'y'], dtype=object)

    To correct this, the list of labels should be passed in as:

    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit([['sci-fi', 'thriller', 'comedy']])
    MultiLabelBinarizer()
    >>> mlb.classes_
    array(['comedy', 'sci-fi', 'thriller'], dtype=object)
    r{   NrQ   rj   rU   rV   Fc                "    || _         || _        d S rY   r   )r"   rj   rU   s      r$   rZ   zMultiLabelBinarizer.__init__  s    *r&   Tr[   c                    d| _         | j        :t          t          t          j                            |                              }nMt          t          | j                            t          | j                  k     rt          d          | j        }t          d |D                       rt          nt          }t          j        t          |          |          | _        || j        dd<   | S )a  Fit the label sets binarizer, storing :term:`classes_`.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        self : object
            Fitted estimator.
        NztThe classes argument contains duplicate classes. Remove these duplicates before passing them to MultiLabelBinarizer.c              3   @   K   | ]}t          |t                    V  d S rY   r   r   .0cs     r$   	<genexpr>z*MultiLabelBinarizer.fit.<locals>.<genexpr>  s,      ??!:a--??????r&   r   )_cached_dictrj   sortedset	itertoolschainfrom_iterabler   r9   allr   objectr   emptyr    )r"   r#   rj   r,   s       r$   r%   zMultiLabelBinarizer.fit  s      !<S!>!>q!A!ABBCCGGT\""##c$,&7&777/   lG??w?????KVWU;;;"aaar&   c                 ~   | j         (|                     |                              |          S d| _        t	          t
                    }|j        |_        |                     ||          }t          ||j
                  }t          d |D                       rt
          nt          }t          j        t          |          |          }||dd<   t          j        |d          \  | _        }t          j        ||j                 |j        j                  |_        | j        s|                                }|S )aM  Fit the label sets binarizer and transform the given label sets.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        y_indicator : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]`
            is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR
            format.
        Nkeyc              3   @   K   | ]}t          |t                    V  d S rY   r   r   s     r$   r   z4MultiLabelBinarizer.fit_transform.<locals>.<genexpr>B  s,      ;;!:a--;;;;;;r&   r   Tr(   )rj   r%   r1   r   r   r   __len__default_factory
_transformr   getr   r   r   r   r   uniquer    r.   r   r,   rU   rr   )r"   r#   class_mappingyttmpr,   inverses          r$   r*   z!MultiLabelBinarizer.fit_transform"  s   $ <#88A;;((+++  $C(((5(=%__Q.. ](9::: ;;s;;;;;GS777aaa!#=!N!N!NwZ
 32:;KLLL
! 	B	r&   c                     t          |            |                                 }|                     ||          }| j        s|                                }|S )a  Transform the given label sets.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        y_indicator : array or CSR matrix, shape (n_samples, n_classes)
            A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in
            `y[i]`, and 0 otherwise.
        )r   _build_cacher   rU   rr   )r"   r#   class_to_indexr   s       r$   r1   zMultiLabelBinarizer.transformN  sS      	**,,__Q//! 	B	r&   c           
          | j         Ft          t          | j        t	          t          | j                                                | _         | j         S rY   )r   ry   zipr    ranger   )r"   s    r$   r   z MultiLabelBinarizer._build_cacheh  sB    $ $Sc$->P>P8Q8Q%R%R S SD  r&   c                    t          j         d          }t          j         ddg          }t                      }|D ]}t                      }|D ]C}	 |                    ||                    # t          $ r |                    |           Y @w xY w|                    |           |                    t          |                     |r;t          j        d	                    t          |t                                         t          j        t          |          t                    }	t          j        |	||ft          |          dz
  t          |          f          S )a/  Transforms the label sets with a given mapping.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        class_mapping : Mapping
            Maps from label to column index in label indicator matrix.

        Returns
        -------
        y_indicator : sparse matrix of shape (n_samples, n_classes)
            Label indicator matrix. Will be of CSR format.
        r   r   z%unknown class(es) {0} will be ignoredr   r   rW   r   )r   r   addKeyErrorextendr   r   warningsr   r   r   r:   r   onesr   rd   rq   )
r"   r#   r   r   r   r   labelsindexlabelr   s
             r$   r   zMultiLabelBinarizer._transformn  sh   $ +c""S1#&&%% 	( 	(FEEE ' ''IImE23333 ' ' 'KK&&&&&'NN5!!!MM#g,,'''' 	M7>>vgSV?W?W?WXX   ws7||3///}7F#CKK!OS=O=O+P
 
 
 	
s   A,,BBc                     t                      j        d         t           j                  k    r@t	          d                    t           j                  j        d                             t          j                  r                                t          j	                  dk    r<t          t          j        j	        ddg                    dk    rt	          d           fdt          j        dd         j        dd                   D             S t          j        ddg          }t          |          dk    r"t	          d                    |                     fd	D             S )
a  Transform the given indicator matrix into label sets.

        Parameters
        ----------
        yt : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            A matrix containing only 1s ands 0s.

        Returns
        -------
        y : list of tuples
            The set of labels for each sample such that `y[i]` consists of
            `classes_[j]` for each `yt[i, j] == 1`.
        rW   z/Expected indicator for {0} classes, but got {1}r   z+Expected only 0s and 1s in label indicator.c           	      ~    g | ]9\  }}t          j                            j        ||                             :S  )tupler    r;   r   )r   startendr"   r   s      r$   
<listcomp>z9MultiLabelBinarizer.inverse_transform.<locals>.<listcomp>  sP       E3 dm((E#I)>??@@  r&   Nr   z8Expected only 0s and 1s in label indicator. Also got {0}c                 ^    g | ])}t          j                            |                    *S r   )r   r    compress)r   
indicatorsr"   s     r$   r   z9MultiLabelBinarizer.inverse_transform.<locals>.<listcomp>  s1    SSS*E$-00<<==SSSr&   )r   r8   r   r    r9   r   rd   re   r   r   r   r   r   r   )r"   r   
unexpecteds   `` r$   r=   z%MultiLabelBinarizer.inverse_transform  s    	8A;#dm,,,,AHH&&    ;r?? 	TB27||q  Sbg1v)F)F%G%G!%K%K !NOOO    "%binbim"D"D   
 b1a&11J:"" NUU"   
 TSSSPRSSSSr&   c                 x    t                                                      }d|j        _        d|j        _        |S rw   )r?   r@   rB   rC   rD   two_d_labelsrF   s     r$   r@   z$MultiLabelBinarizer.__sklearn_tags__  rx   r&   )rI   rJ   rK   rL   rV   ry   rz   rZ   r   r%   r*   r1   r   r   r=   r@   rM   rN   s   @r$   r   r     s'        < <~ !$'#$ $D   
 #'e + + + + + \555  65@ \555) ) 65)V  4! ! !&
 &
 &
P'T 'T 'TR        r&   r   ),r   r   r   collectionsr   numbersr   numpyr   scipy.sparsesparserd   baser   r   r   utilsr	   utils._array_apir
   r   r   utils._encoder   r   utils._param_validationr   r   utils.multiclassr   r   utils.sparsefuncsr   utils.validationr   r   r   __all__r   r   r   ro   rp   r   r   r&   r$   <module>r     s         # # # # # #                 @ @ @ @ @ @ @ @ @ @             @ @ @ @ @ @ @ @ @ @ , , , , , , , , ? ? ? ? ? ? ? ? < < < < < < < < , , , , , , I I I I I I I I I I  M M M M M#]$ M M M M`| | | | |%}D | | | |~ O, >hxtIFFFGhxtIFFFG#  #'	 	 	 -.% h h h h	 	hV(; (; (;V)L )L )LXJ J J J J*MQU J J J J J Jr&   