
    M/Ph                     :    d Z ddlZddlmZ  G d de          ZdS )a?  
Empirical Likelihood Linear Regression Inference

The script contains the function that is optimized over nuisance parameters to
 conduct inference on linear regression parameters.  It is called by eltest
in OLSResults.


General References
-----------------

Owen, A.B.(2001). Empirical Likelihood. Chapman and Hall

    N)
_OptFunctsc                   (    e Zd ZdZd Z	 	 	 	 ddZdS )
_ELRegOptsz

    A class that holds functions to be optimized over when conducting
    hypothesis tests and calculating confidence intervals.

    Parameters
    ----------

    OLSResults : Results instance
        A fitted OLS result.
    c                     d S )N )selfs    ]/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/statsmodels/emplike/elregress.py__init__z_ELRegOpts.__init__    s        Nc
                    |||<   t          j        t          j        t          j        |          |                    }
|||
<   |                    |d          }|| _        ||t          j        t          j        ||                    z
                      t          |          d          z  }|	st          j	        |d          dd         }t          j
        ||z  d          dd         |z  }|ddddf         |z
  }||z  ddddf         |z
  }t          j        ||fd          }t          j        ||fd          }t          j        t          |                    d|z  z  }t          j        |j        d                                       dd          }	 |                     |||          }dt          j        ||j                  z   }d|z  dz  |z  | _        t          j
        t          j        || j        z                      }d|z  S # t           j        j        $ r t           j        cY S w xY w)a  
        A function that is optimized over nuisance parameters to conduct a
        hypothesis test for the parameters of interest.

        Parameters
        ----------
        nuisance_params: 1darray
            Parameters to be optimized over.

        Returns
        -------
        llr : float
            -2 x the log-likelihood of the nuisance parameters and the
            hypothesized value of the parameter(s) of interest.
           r   )axisNg      ?)npint_deletearangereshape
new_paramssqueezedotintmeansumconcatenateoneszerosshape_modif_newtonTnew_weightsloglinalgLinAlgErrorinf)r   nuisance_params
param_numsendogexognobsnvarparamsb0_valsstochastic_exognuis_param_indexr   est_vect
exog_means	exog_mom2mean_est_vectmom2_est_vectregressor_est_vectwtsx0eta_stardenomllrs                          r	   _opt_nuis_regressz_ELRegOpts._opt_nuis_regress#   sN   & %z729RYt__-7$9 $9 : :#2 ^^D!,,
$2:bfT:66777
@
@TA
N
NO 		3A...qrr2Jt!444abb9 !I ABBK*4M!D[!!!QRR%09<M!#0N56"8 "8 "8~x1C&D013 3 3H gc$ii  BI.XhnQ'((00Q77	))"h<<H(*555E!Dy2~5D &t'7 78899C8Oy$ 	 	 	6MMM	s   #A6H  H=<H=)NNNNNNNN)__name__
__module____qualname____doc__r
   r<   r   r   r	   r   r      sP        
 
   =A+/EI*.4 4 4 4 4 4r   r   )r@   numpyr   statsmodels.emplike.descriptiver   r   r   r   r	   <module>rC      sm         6 6 6 6 6 6C C C C C C C C C Cr   