
    M/Phg                     8   d Z ddlZddlmZmZ dZd7dZd7dZd Z	d	
                    e
          e	_         d Zd
                    e
          e_         d Zd
                    e
          e_         d Zd
                    e
          e_         d Zd
                    e
          e_         d Zd
                    e
          e_         d Zd Zd Zd
                    e
          e_         d Zd
                    e
          e_         d Zd
                    e
          e_         d Zd
                    e
          e_         d Zd 
                    e
          e_         d! Zd" Zd#
                    e
          e_         d$ Zd%
                    e
          e_         d& Zd' Zd(
                    e
          e_         d) Zd*
                    e
          e_         d+ Zd,
                    e
          e_         d- Zd.
                    e
          e_         d/ Zd0
                    e
          e_         d1 Z d2 Z!d3
                    e
          e!_         d4 Z"d5
                    e
          e"_         eeeeeeeeee"d6
Z#e	eeeeeeeee!d6
Z$dS )8uD  Asymmetric kernels for R+ and unit interval

References
----------

.. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
   Asymmetric Kernel Density Estimators and Smoothed Histograms with
   Application to Income Data.” Econometric Theory 21 (2): 390–412.

.. [2] Chen, Song Xi. 1999. “Beta Kernel Estimators for Density Functions.”
   Computational Statistics & Data Analysis 31 (2): 131–45.
   https://doi.org/10.1016/S0167-9473(99)00010-9.

.. [3] Chen, Song Xi. 2000. “Probability Density Function Estimation Using
   Gamma Kernels.”
   Annals of the Institute of Statistical Mathematics 52 (3): 471–80.
   https://doi.org/10.1023/A:1004165218295.

.. [4] Jin, Xiaodong, and Janusz Kawczak. 2003. “Birnbaum-Saunders and
   Lognormal Kernel Estimators for Modelling Durations in High Frequency
   Financial Data.” Annals of Economics and Finance 4: 103–24.

.. [5] Micheaux, Pierre Lafaye de, and Frédéric Ouimet. 2020. “A Study of Seven
   Asymmetric Kernels for the Estimation of Cumulative Distribution Functions,”
   November. https://arxiv.org/abs/2011.14893v1.

.. [6] Mombeni, Habib Allah, B Masouri, and Mohammad Reza Akhoond. 2019.
   “Asymmetric Kernels for Boundary Modification in Distribution Function
   Estimation.” REVSTAT, 1–27.

.. [7] Scaillet, O. 2004. “Density Estimation Using Inverse and Reciprocal
   Inverse Gaussian Kernels.”
   Journal of Nonparametric Statistics 16 (1–2): 217–26.
   https://doi.org/10.1080/10485250310001624819.


Created on Mon Mar  8 11:12:24 2021

Author: Josef Perktold
License: BSD-3

    N)specialstatsa[  Parameters
    ----------
    x : array_like, float
        Points for which density is evaluated. ``x`` can be scalar or 1-dim.
    sample : ndarray, 1-d
        Sample from which kde is computed.
    bw : float
        Bandwidth parameter, there is currently no default value for it.

    Returns
    -------
    Components for kernel estimation
   c                    t          |          r|nt          |         |dz  }t          j        |           t	                    z  |k     rat          j        |           dk    rt          j        |           dddf         }  |           }|                    d          }n|z  }n1t          j        t	                              t	                    z  |t	                    z  }t	          |           |z  }	t          j        | |	          }
t          j	        fd|
D                       }|S )ac  Density estimate based on asymmetric kernel.

    Parameters
    ----------
    x : array_like, float
        Points for which density is evaluated. ``x`` can be scalar or 1-dim.
    sample : ndarray, 1-d
        Sample from which kernel estimate is computed.
    bw : float
        Bandwidth parameter, there is currently no default value for it.
    kernel_type : str or callable
        Kernel name or kernel function.
        Currently supported kernel names are "beta", "beta2", "gamma",
        "gamma2", "bs", "invgamma", "invgauss", "lognorm", "recipinvgauss" and
        "weibull".
    weights : None or ndarray
        If weights is not None, then kernel for sample points are weighted
        by it. No weights corresponds to uniform weighting of each component
        with 1 / nobs, where nobs is the size of `sample`.
    batch_size : float
        If x is an 1-dim array, then points can be evaluated in vectorized
        form. To limit the amount of memory, a loop can work in batches.
        The number of batches is determined so that the intermediate array
        sizes are limited by

        ``np.size(batch) * len(sample) < batch_size * 1000``.

        Default is to have at most 10000 elements in intermediate arrays.

    Returns
    -------
    pdf : float or ndarray
        Estimate of pdf at points x. ``pdf`` has the same size or shape as x.
         Nc                 D    g | ]} |d d d f                   z  S N .0xibwkfuncsampleweightss     l/var/www/html/test/jupyter/venv/lib/python3.11/site-packages/statsmodels/nonparametric/kernels_asymmetric.py
<listcomp>z#pdf_kernel_asym.<locals>.<listcomp>{   H     1 1 1"$  %uR4[&"==G 1 1 1    )
callablekernel_dict_pdfnpsizelenasarraymeanonesarray_splitconcatenate)xr   r   kernel_typer   
batch_sizepdfipdfknx_splitr   s    `` `      @r   pdf_kernel_asymr*   >   U   H  -,d"J	wqzzCKK*,,71::>>
1aaag&AuQ##?))B--CC.CC ?gc&kk**S[[8G#f++%FFaK.A&&n 1 1 1 1 1 1 1(/1 1 1 2 2 Jr   c                    t          |          r|nt          |         |dz  }t          j        |           t	                    z  |k     rat          j        |           dk    rt          j        |           dddf         }  |           }|                    d          }n|z  }n1t          j        t	                              t	                    z  |t	                    z  }t	          |           |z  }	t          j        | |	          }
t          j	        fd|
D                       }|S )av  Estimate of cumulative distribution based on asymmetric kernel.

    Parameters
    ----------
    x : array_like, float
        Points for which density is evaluated. ``x`` can be scalar or 1-dim.
    sample : ndarray, 1-d
        Sample from which kernel estimate is computed.
    bw : float
        Bandwidth parameter, there is currently no default value for it.
    kernel_type : str or callable
        Kernel name or kernel function.
        Currently supported kernel names are "beta", "beta2", "gamma",
        "gamma2", "bs", "invgamma", "invgauss", "lognorm", "recipinvgauss" and
        "weibull".
    weights : None or ndarray
        If weights is not None, then kernel for sample points are weighted
        by it. No weights corresponds to uniform weighting of each component
        with 1 / nobs, where nobs is the size of `sample`.
    batch_size : float
        If x is an 1-dim array, then points can be evaluated in vectorized
        form. To limit the amount of memory, a loop can work in batches.
        The number of batches is determined so that the intermediate array
        sizes are limited by

        ``np.size(batch) * len(sample) < batch_size * 1000``.

        Default is to have at most 10000 elements in intermediate arrays.

    Returns
    -------
    cdf : float or ndarray
        Estimate of cdf at points x. ``cdf`` has the same size or shape as x.
    r   r   Nr	   c                 D    g | ]} |d d d f                   z  S r   r   r   s     r   r   z#cdf_kernel_asym.<locals>.<listcomp>   r   r   )
r   kernel_dict_cdfr   r   r   r   r   r   r    r!   )r"   r   r   r#   r   r$   cdficdfr'   r(   r)   r   s    `` `      @r   cdf_kernel_asymr1      r+   r   c                 b    t           j                            || |z  dz   d| z
  |z  dz             S Nr   )r   betar&   r"   r   r   s      r   kernel_pdf_betar6      s/    :>>&!b&1*q1ulQ.>???r   u      Beta kernel for density, pdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
       Asymmetric Kernel Density Estimators and Smoothed Histograms with
       Application to Income Data.” Econometric Theory 21 (2): 390–412.

    .. [2] Chen, Song Xi. 1999. “Beta Kernel Estimators for Density Functions.”
       Computational Statistics & Data Analysis 31 (2): 131–45.
       https://doi.org/10.1016/S0167-9473(99)00010-9.
    )
doc_paramsc                 b    t           j                            || |z  dz   d| z
  |z  dz             S r3   )r   r4   sfr5   s      r   kernel_cdf_betar:      s/    :==R!a!er\A-=>>>r   u#      Beta kernel for cumulative distribution, cdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
       Asymmetric Kernel Density Estimators and Smoothed Histograms with
       Application to Income Data.” Econometric Theory 21 (2): 390–412.

    .. [2] Chen, Song Xi. 1999. “Beta Kernel Estimators for Density Functions.”
       Computational Statistics & Data Analysis 31 (2): 131–45.
       https://doi.org/10.1016/S0167-9473(99)00010-9.
    c                 j   d|dz  z  dz   }d|dz  z  d|dz  z  z   dz   }t          j        |           dk    r| d|z  k     rL|t          j        || dz  z
  | |z  z
            z
  }t          j                            ||d| z
  |z            }n&| dd|z  z
  k    rMd| z
  }|t          j        ||dz  z
  ||z  z
            z
  }t          j                            || |z  |          }nt          j                            || |z  d| z
  |z            }n| |z  }d| z
  |z  }	| d|z  k     }
| |
         }|t          j        ||dz  z
  ||z  z
            z
  ||
<   | dd|z  z
  k    }d| |         z
  }|t          j        ||dz  z
  ||z  z
            z
  |	|<   t          j                            |||	          }|S N   g      @      g      @r   )r   r   sqrtr   r4   r&   r"   r   r   a1a2ar&   x_alphar4   mask_lowmask_upps               r   kernel_pdf_beta2rI      s    
RUSB	
RUQQY		%B	wqzzQq2v::RWR!Q$YR/000A*..QUbL99CC!a"f*QBRWR"a%Z"r'1222A*..R33CC*..R!a%2>>CCBA|q2v:x[rwrBEzBG';<<<hAF
#8_bgb2q5j27&:;;;XjnnVUD11Jr   u-      Beta kernel for density, pdf, estimation with boundary corrections.

    {doc_params}

    References
    ----------
    .. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
       Asymmetric Kernel Density Estimators and Smoothed Histograms with
       Application to Income Data.” Econometric Theory 21 (2): 390–412.

    .. [2] Chen, Song Xi. 1999. “Beta Kernel Estimators for Density Functions.”
       Computational Statistics & Data Analysis 31 (2): 131–45.
       https://doi.org/10.1016/S0167-9473(99)00010-9.
    c                 j   d|dz  z  dz   }d|dz  z  d|dz  z  z   dz   }t          j        |           dk    r| d|z  k     rL|t          j        || dz  z
  | |z  z
            z
  }t          j                            ||d| z
  |z            }n&| dd|z  z
  k    rMd| z
  }|t          j        ||dz  z
  ||z  z
            z
  }t          j                            || |z  |          }nt          j                            || |z  d| z
  |z            }n| |z  }d| z
  |z  }	| d|z  k     }
| |
         }|t          j        ||dz  z
  ||z  z
            z
  ||
<   | dd|z  z
  k    }d| |         z
  }|t          j        ||dz  z
  ||z  z
            z
  |	|<   t          j                            |||	          }|S r<   )r   r   r@   r   r4   r9   rA   s               r   kernel_cdf_beta2rK   &  s    
RUSB	
RUQQY		%B	wqzzQq2v::RWR!Q$YR/000A*--AER<88CC!a"f*QBRWR"a%Z"r'1222A*--B22CC*--BQ"==CCBA|q2v:x[rwrBEzBG';<<<hAF
#8_bgb2q5j27&:;;;XjmmFE400Jr   u"      Beta kernel for cdf estimation with boundary correction.

    {doc_params}

    References
    ----------
    .. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
       Asymmetric Kernel Density Estimators and Smoothed Histograms with
       Application to Income Data.” Econometric Theory 21 (2): 390–412.

    .. [2] Chen, Song Xi. 1999. “Beta Kernel Estimators for Density Functions.”
       Computational Statistics & Data Analysis 31 (2): 131–45.
       https://doi.org/10.1016/S0167-9473(99)00010-9.
    c                 V    t           j                            || |z  dz   |          }|S Nr   scaler   gammar&   )r"   r   r   r%   s       r   kernel_pdf_gammarR   \  s(    ;??61r6A:R?88DKr   u-      Gamma kernel for density, pdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
       Asymmetric Kernel Density Estimators and Smoothed Histograms with
       Application to Income Data.” Econometric Theory 21 (2): 390–412.

    .. [2] Chen, Song Xi. 2000. “Probability Density Function Estimation Using
       Gamma Krnels.”
       Annals of the Institute of Statistical Mathematics 52 (3): 471–80.
       https://doi.org/10.1023/A:1004165218295.
    c                 V    t           j                            || |z  dz   |          }|S rM   r   rQ   r9   )r"   r   r   r/   s       r   kernel_cdf_gammarU   t  s*     ;>>&!b&1*B>77DKr   u=      Gamma kernel for cumulative distribution, cdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
       Asymmetric Kernel Density Estimators and Smoothed Histograms with
       Application to Income Data.” Econometric Theory 21 (2): 390–412.

    .. [2] Chen, Song Xi. 2000. “Probability Density Function Estimation Using
       Gamma Krnels.”
       Annals of the Institute of Statistical Mathematics 52 (3): 471–80.
       https://doi.org/10.1023/A:1004165218295.
    c                 L    t           j                            || |z  |          S )zGamma kernel for pdf, without boundary corrected part.

    drops `+ 1` in shape parameter

    It should be possible to use this if probability in
    neighborhood of zero boundary is small.

    rN   rP   r5   s      r   _kernel_pdf_gammarW     s"     ;??61r6?444r   c                 L    t           j                            || |z  |          S )zGamma kernel for cdf, without boundary corrected part.

    drops `+ 1` in shape parameter

    It should be possible to use this if probability in
    neighborhood of zero boundary is small.

    rN   rT   r5   s      r   _kernel_cdf_gammarY     s"     ;>>&!b&>333r   c                     t          j        |           dk    r| d|z  k     r| |z  dz  dz   }n%| |z  }n| |z  }| d|z  k     }||         dz  dz   ||<   t          j                            |||          }|S Nr   r=   rN   )r   r   r   rQ   r&   r"   r   r   rD   maskr&   s         r   kernel_pdf_gamma2r^     s    	wqzzQq2v::R!aAABAAF1r6zD'1*q.$
+//&!2/
.
.CJr   uF      Gamma kernel for density, pdf, estimation with boundary correction.

    {doc_params}

    References
    ----------
    .. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
       Asymmetric Kernel Density Estimators and Smoothed Histograms with
       Application to Income Data.” Econometric Theory 21 (2): 390–412.

    .. [2] Chen, Song Xi. 2000. “Probability Density Function Estimation Using
       Gamma Krnels.”
       Annals of the Institute of Statistical Mathematics 52 (3): 471–80.
       https://doi.org/10.1023/A:1004165218295.
    c                     t          j        |           dk    r| d|z  k     r| |z  dz  dz   }n%| |z  }n| |z  }| d|z  k     }||         dz  dz   ||<   t          j                            |||          }|S r[   )r   r   r   rQ   r9   r\   s         r   kernel_cdf_gamma2r`     s    	wqzzQq2v::R!aAABAAF1r6zD'1*q.$
+..".
-
-CJr   u<      Gamma kernel for cdf estimation with boundary correction.

    {doc_params}

    References
    ----------
    .. [1] Bouezmarni, Taoufik, and Olivier Scaillet. 2005. “Consistency of
       Asymmetric Kernel Density Estimators and Smoothed Histograms with
       Application to Income Data.” Econometric Theory 21 (2): 390–412.

    .. [2] Chen, Song Xi. 2000. “Probability Density Function Estimation Using
       Gamma Krnels.”
       Annals of the Institute of Statistical Mathematics 52 (3): 471–80.
       https://doi.org/10.1023/A:1004165218295.
    c                 X    t           j                            |d|z  dz   | |z            S rM   )r   invgammar&   r5   s      r   kernel_pdf_invgammarc     s+    >fa"fqjB???r   u      Inverse gamma kernel for density, pdf, estimation.

    Based on cdf kernel by Micheaux and Ouimet (2020)

    {doc_params}

    References
    ----------
    .. [1] Micheaux, Pierre Lafaye de, and Frédéric Ouimet. 2020. “A Study of
       Seven Asymmetric Kernels for the Estimation of Cumulative Distribution
       Functions,” November. https://arxiv.org/abs/2011.14893v1.
    c                 X    t           j                            |d|z  dz   | |z            S rM   )r   rb   r9   r5   s      r   kernel_cdf_invgammare     s+    >VQVaZq2v>>>r   u_      Inverse gamma kernel for cumulative distribution, cdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Micheaux, Pierre Lafaye de, and Frédéric Ouimet. 2020. “A Study of
       Seven Asymmetric Kernels for the Estimation of Cumulative Distribution
       Functions,” November. https://arxiv.org/abs/2011.14893v1.
    c                 Z    | }d|z  }t           j                            |||z  |          S rM   )r   invgaussr&   r"   r   r   mlams        r   kernel_pdf_invgaussrk     s1    	A
b&C>fa#gS999r   uZ      Inverse gaussian kernel for density, pdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Scaillet, O. 2004. “Density Estimation Using Inverse and Reciprocal
       Inverse Gaussian Kernels.”
       Journal of Nonparametric Statistics 16 (1–2): 217–26.
       https://doi.org/10.1080/10485250310001624819.
    c                     dt          j        dt           j        z  |z  |dz  z            z  t          j        dd|z  | z  z  || z  dz
  | |z  z   z            z  }|                    d          S )zJInverse gaussian kernel density, explicit formula.

    Scaillet 2004
    r   r=      r	   )r   r@   piexpr   r"   r   r   r&   s       r   kernel_pdf_invgauss_rq   &  sq    
 rwq25y2~	12226#R!$
QV(CDEEFC88B<<r   c                 Z    | }d|z  }t           j                            |||z  |          S rM   )r   rg   r9   rh   s        r   kernel_cdf_invgaussrs   0  s1    	A
b&C>VQWC888r   uj      Inverse gaussian kernel for cumulative distribution, cdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Scaillet, O. 2004. “Density Estimation Using Inverse and Reciprocal
       Inverse Gaussian Kernels.”
       Journal of Nonparametric Statistics 16 (1–2): 217–26.
       https://doi.org/10.1080/10485250310001624819.
    c                 l    d| |z
  z  }d|z  }t           j                            |||z  d|z            S rM   )r   recipinvgaussr&   rh   s        r   kernel_pdf_recipinvgaussrv   E  s@    
 	
QVA
b&C""61s7!c'"BBBr   ue      Reciprocal inverse gaussian kernel for density, pdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Scaillet, O. 2004. “Density Estimation Using Inverse and Reciprocal
       Inverse Gaussian Kernels.”
       Journal of Nonparametric Statistics 16 (1–2): 217–26.
       https://doi.org/10.1080/10485250310001624819.
    c                     dt          j        dt           j        z  |z  |z            z  t          j        | |z
   d|z  z  |z  | |z
  z  dz
  | |z
  |z  z             z  }|S )zUReciprocal inverse gaussian kernel density, explicit formula.

    Scaillet 2004
    r   r=   )r   r@   rn   ro   rp   s       r   kernel_pdf_recipinvgauss_rx   ]  sw     rwq25y2~.///6QV*B'&0AF;a?r6V#$ % %%C Jr   c                 l    d| |z
  z  }d|z  }t           j                            |||z  d|z            S rM   )r   ru   r9   rh   s        r   kernel_cdf_recipinvgaussrz   i  s@    
 	
QVA
b&C!!&!c'S!AAAr   u[      Reciprocal inverse gaussian kernel for cdf estimation.

    {doc_params}

    References
    ----------
    .. [1] Scaillet, O. 2004. “Density Estimation Using Inverse and Reciprocal
       Inverse Gaussian Kernels.”
       Journal of Nonparametric Statistics 16 (1–2): 217–26.
       https://doi.org/10.1080/10485250310001624819.
    c                 F    t           j                            |||           S NrN   )r   fatiguelifer&   r5   s      r   kernel_pdf_bsr~     s       1 555r   uZ      Birnbaum Saunders (normal) kernel for density, pdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Jin, Xiaodong, and Janusz Kawczak. 2003. “Birnbaum-Saunders and
       Lognormal Kernel Estimators for Modelling Durations in High Frequency
       Financial Data.” Annals of Economics and Finance 4: 103–24.
    c                 F    t           j                            |||           S r|   )r   r}   r9   r5   s      r   kernel_cdf_bsr     s     !444r   u      Birnbaum Saunders (normal) kernel for cdf estimation.

    {doc_params}

    References
    ----------
    .. [1] Jin, Xiaodong, and Janusz Kawczak. 2003. “Birnbaum-Saunders and
       Lognormal Kernel Estimators for Modelling Durations in High Frequency
       Financial Data.” Annals of Economics and Finance 4: 103–24.
    .. [2] Mombeni, Habib Allah, B Masouri, and Mohammad Reza Akhoond. 2019.
       “Asymmetric Kernels for Boundary Modification in Distribution Function
       Estimation.” REVSTAT, 1–27.
    c                     t          j        dt          j        d|z             z            }t          j                            |||           S Nr>   r   rN   )r   r@   logr   lognormr&   r"   r   r   bw_s       r   kernel_pdf_lognormr     s@     '!BF1R4LL.
!
!C=VS222r   u      Log-normal kernel for density, pdf, estimation.

    {doc_params}

    Notes
    -----
    Warning: parameterization of bandwidth will likely be changed

    References
    ----------
    .. [1] Jin, Xiaodong, and Janusz Kawczak. 2003. “Birnbaum-Saunders and
       Lognormal Kernel Estimators for Modelling Durations in High Frequency
       Financial Data.” Annals of Economics and Finance 4: 103–24.
    c                     t          j        dt          j        d|z             z            }t          j                            |||           S r   )r   r@   r   r   r   r9   r   s       r   kernel_cdf_lognormr     s@     '!BF1R4LL.
!
!C=FCq111r   u      Log-normal kernel for cumulative distribution, cdf, estimation.

    {doc_params}

    Notes
    -----
    Warning: parameterization of bandwidth will likely be changed

    References
    ----------
    .. [1] Jin, Xiaodong, and Janusz Kawczak. 2003. “Birnbaum-Saunders and
       Lognormal Kernel Estimators for Modelling Durations in High Frequency
       Financial Data.” Annals of Economics and Finance 4: 103–24.
    c                 4   dt          j        d|z             z  }dt          j        |t           j        z            z  |z  t          j        t          j        |           t          j        |          z
  dz   |z            z  }|                    d          S )z]Log-normal kernel for density, pdf, estimation, explicit formula.

    Jin, Kawczak 2003
       r   r=   r	   )r   r   r@   rn   ro   r   )r"   r   r   termr&   s        r   kernel_pdf_lognorm_r     s}    
 rva"f~~Drwtbe|$$$v-6RVAYY/!33d:;;<C88B<<r   c           	      |    t           j                            |d|z  | t          j        d|z             z            S rM   )r   weibull_minr&   r   rQ   r5   s      r   kernel_pdf_weibullr     sE    
   R'(7=R+@+@'@ ! B B Br   u\      Weibull kernel for density, pdf, estimation.

    Based on cdf kernel by Mombeni et al. (2019)

    {doc_params}

    References
    ----------
    .. [1] Mombeni, Habib Allah, B Masouri, and Mohammad Reza Akhoond. 2019.
       “Asymmetric Kernels for Boundary Modification in Distribution Function
       Estimation.” REVSTAT, 1–27.
    c           	      |    t           j                            |d|z  | t          j        d|z             z            S rM   )r   r   r9   r   rQ   r5   s      r   kernel_cdf_weibullr     sE    
 B&''-B*?*?&?   A A Ar   u:      Weibull kernel for cumulative distribution, cdf, estimation.

    {doc_params}

    References
    ----------
    .. [1] Mombeni, Habib Allah, B Masouri, and Mohammad Reza Akhoond. 2019.
       “Asymmetric Kernels for Boundary Modification in Distribution Function
       Estimation.” REVSTAT, 1–27.
    )
r4   beta2bsrQ   gamma2rb   rg   r   ru   weibull)Nr   )%__doc__numpyr   scipyr   r   r7   r*   r1   r6   formatr:   rI   rK   rR   rU   rW   rY   r^   r`   rc   re   rk   rq   rs   rv   rx   rz   r~   r   r   r   r   r   r   r.   r   r   r   r   <module>r      s  ) )V                    (
@ @ @ @F@ @ @ @F@ @ @
 	*%%  "? ? ?
 	*%%  "" " "J 	*%%  "" " "J 	*%%  "   	*%%  $   	*%%  $	5 	5 	5	4 	4 	4  " 	*%%  $  " 	*%%  $@ @ @
 	*%%  ? ? ?

 	*%%  : : : 	*%%    9 9 9 	*%%  C C C$ 	*%%   	 	 	B B B$ 	*%%   6 6 6

 	*%%  5 5 5
 	*%%   
3 
3 
3 	*%%  "
2 
2 
2 	*%%  "  B B B 	*%%  A A A
 	*%%  " 
##!-!  
##!-! r   